

Red John Pumped Storage Hydro Scheme

Volume 5, Appendix 16.4: Uncertainty in Modelling

ILI (Highlands PSH) Ltd.

November 2018

Quality information

Prepared by	Checked by	Verified by	Approved by			
Seckin Basturk	Tim Britton	Debbie Preston	Catherine Anderson			
Acoustic Consultant	Principal Acoustic Consultant	Principal Acoustic Consultant	Associate Director			

Revision History

Revision	Revision date	Details	Authorized	Name	Position	
1	November 2018	Submission	CA	Catherine Anderson	Associate Director	

Distribution List

Hard Copies PDF Required Association / Company Name

Table of Contents

.4 Uncertainty in Modelling	1
Acoustic modelling details	1
Acoustic modelling input data	1
Acoustic model settings	3
Uncertainty in modelling	4
	Acoustic modelling details Acoustic modelling input data Acoustic model settings Uncertainty in modelling

Tables

Table 16.1 Data sources	1
Table 16.2 Sound power levels of modelled sound sources	1

© 2018 AECOM Limited. All Rights Reserved.

This document has been prepared by AECOM Limited ("AECOM") for sole use of our client (the "Client") in accordance with generally accepted consultancy principles, the budget for fees and the terms of reference agreed between AECOM and the Client. Any information provided by third parties and referred to herein has not been checked or verified by AECOM, unless otherwise expressly stated in the document. No third party may rely upon this document without the prior and express written agreement of AECOM.

Appendix 16.4 Uncertainty in Modelling

16.1 Acoustic modelling details

16.1.1 Modelling of sound levels from the Dvelopment have been undertaken using SoundPLAN (version 8.0) acoustic modelling software. This software implements the sound propagation calculation methodology set out in BS 5228-1.

16.2 Acoustic modelling input data

16.2.1 Data sources used for this modelling are shown in Table 16.1.

Table 16.1 Data sources

Data	Source file	Received from
OS mapping	60540914-REF-20-0000-C-0007 OS 10k Vector Mapping.dwg	AECOM
Existing topography	NextMap_5m_Contour.DWG	AECOM
Proposed ground levels at Headpond area	60540914-REF-20-0000-C-0001 HEADPOND CONTOURS.dwg	AECOM
Proposed development layout	S01-ACM-Z0-00-SH-CE-100101-B.pdf (also known as Figures 2.3, 2.4 and 2.5 of Volume 3)	AECOM

16.2.2 Sound power levels for sources included in the acoustic model are set out in Table 16.2 below.

Table 16.2 Sound power levels of modelled sound sources

Source	Source Type (Sound Power	Sound Power Levels at Octave Band Centre Frequency (Hz)								Total A- weighted
	Descriptor)	63	125	250	500	1000	2000	4000	8000	(dB)
Construction – Sweepers at road crossings	Area source (dB per unit)	108	103	97	103	99	95	89	86	104
Access road construction – site clearance	Area source (dB per unit)	133	130	123	119	118	115	116	110	124
Access road construction – road surfacing	Area source (dB per unit)	128	121	117	120	119	116	111	101	123
Compound 1 set up	Area source (dB per unit)	129	122	118	121	120	117	112	102	124
Compound 3 set up	Area source (dB per unit)	116	114	109	110	115	103	98	91	116
Headpond works- mobile plant	Area source (dB per unit)	128	122	118	120	119	116	111	102	124

Source	Source Type (Sound Power	Sound Power Levels at Octave Band Centre Frequency (Hz)								Total A- weighted
	Descriptor)	63	125	250	500	1000	2000	4000	8000	(dB)
Headpond works – generators & pumps	Point source (dB)	113	107	106	104	104	102	95	87	108
Headpond works – conveyor drive unit	Point source (dB)	99	97	96	99	103	95	91	85	105
Headpond works – conveyor belt	Line source (dB per m)	72	66	66	57	57	56	61	61	66
Headpond works – concrete batching plant	Area source (dB per unit)	110	107	106	104	102	102	97	94	108
Headpond site clearance	Area source (dB per unit)	133	130	123	119	121	116	112	103	125
Headpond Embankment excavation – mobile plant at Headpond	Area source (dB per unit)	132	131	125	124	125	123	118	113	129
Headpond Embankment excavation – stationary plant at Headpond	Point source (dB)	128	126	123	122	120	118	113	103	125
Headpond Embankment excavation – mobile plant at Compound 4	Area source (dB per unit)	119	112	108	111	110	107	102	92	114
Headpond trench excavation	Area source (dB per unit)	123	123	120	115	117	115	113	108	122
Headpond Embankment construction	Area source (dB per unit)	130	127	123	122	122	119	114	105	126
Headpond Landscape Embankment construction	Area source (dB per unit)	123	116	112	115	114	111	106	96	119
Headpond Spillway Pipe – mobile plant at Compound 3	Area source (dB per unit)	116	114	109	110	115	103	98	91	116
Headpond Inlet / Outlet works	Area source (dB per unit)	106	104	99	100	107	99	91	82	108
Headpond Inlet / Outlet housing	Area source (dB per unit)	106	104	99	100	107	99	91	82	108
Tailpond works – mobile plant	Area source (dB per unit)	122	115	111	114	113	110	105	95	117
Tailpond works – generators and pumps	Point source (dB)	115	110	111	107	107	105	97	90	112

Source	Source Type (Sound Power	Sound Power Levels at Octave Band Centre Frequency (Hz)								Total A- weighted
	Descriptor)	63	125	250	500	1000	2000	4000	8000	(dB)
Tailpond temporary works in Loch Ness	Area source (dB per unit)	115	122	123	119	118	113	109	100	122
Tailpond TBM preparation	Point source (dB)	117	125	110	111	112	111	108	106	118
Tunnelling works – mobile plant at Compound 1	Area source (dB per unit)	116	113	111	109	107	104	99	91	112
Tunnelling works – concrete batching plant at Compound 1	Area source (dB per unit)	110	107	106	104	102	102	97	94	108
Tunnelling – Access Tunnel	Point source (dB)	110	107	111	105	104	100	91	82	109
Tunnelling – Construction Tunnel	Point source (dB)	130	129	121	117	116	114	110	105	122
Tunnelling – Waterways – generators at Compound 1	Point source (dB)	110	107	111	105	104	100	91	82	109
Tunnelling – Waterways – conveyor drive unit	Point source (dB)	99	97	96	99	103	95	91	85	105
Tunnelling – Waterways – conveyor belt	Line source (dB per m)	72	66	66	57	57	56	61	61	66
Tunnelling – TBM decommissioning	Area source (dB per unit)	103	108	105	103	102	101	98	91	108
Hauling* - 10 Dump trucks (90 % on- time)	Moving point source (dB per unit)	130	127	118	114	112	110	107	98	119
Hauling* - 8 Tippers (90 % on-time)	Moving point source (dB per unit)	116	125	112	108	111	108	106	100	116
Hauling* - 10 Concrete Jaegers (80 % on-time)	Moving point source (dB per unit)	117	108	100	103	104	112	94	89	114
Hauling* - 6 Tractors (80 % on-time)	Moving point source (dB per unit)	114	106	113	110	113	105	96	90	115

* Hauling plant speed has been assumed to be 20 km / hr.

16.3 Acoustic model settings

- 16.3.1 Acoustic modelling has been undertaken using the following model settings:
 - Maximum search radius of 5000 m (this is to the maximum source to receiver distance which is considered in the calculations)

- Maximum number of reflections: 3
- Noise predictions carried out at a height of 1.5 m to represent ground floor levels.
- Side diffraction enabled (this setting includes calculation of sound travel not only over an obstacle but also around the sides of it).
- Heights of buildings assumed to be 6 m.
- Ground absorption has been set as below:
 - Acoustically hard ground (G=0) for water surfaces, roads and compound 1 area.
 - Remaining areas set to G=1 representing acoustically soft ground.

16.4 Uncertainty in modelling

- 16.4.1 It should be noted than any predictions of sound levels have an associated degree of uncertainty. Modelling and measurement processes have been carried out in such a way as to reduce such uncertainty; however it is unavoidable that some remains. In particular, the following sources of uncertainty have been noted:
 - Sound source levels have been based on data provided by the manufacturers. The precise methodology by which these data were gathered, and hence the uncertainty associated with these is not known.
 - Predictions of sound pressure levels according to BS5228 are based on an assumption of moderate downwind propagation, and hence could be considered as a worst-case calculation. However, the standard also indicates an estimated accuracy of ±3 dB(A) in predicted levels.

aecom.com