APPENDIX 7.8 GLINT AND GLARE ASSESSMENT

Solar Photovoltaic Glint and Glare Study

Alleston Solar Farm

Stantec UK Limited

April 2024

PLANNING SOLUTIONS FOR:

- Solar
- Telecoms
- Railways
- DefenceBuildings
- Wind
- Airports
- Radar
- Mitigation

www.pagerpower.com

ADMINISTRATION PAGE

Job Reference: 12321A	
Author:	Waqar Qureshi; Abdul Wadud (Issue 2)
Telephone:	01787 319001
Email:	waqar@pagerpower.com

Reviewed By:	James Plumb; Abdul Wadud	
Email:	james@pagerpower.com; abdul@pagerpower.com	

Issue	Date	Detail of Changes
1	31 st January 2024	Initial issue
2	17 th April 2024	Administrative revisions

Confidential: The contents of this document may not be disclosed to others without permission.

Copyright © 2024 Pager Power Limited

Stour Valley Business Centre, Brundon Lane, Sudbury, CO10 7GB

T:+44 (0)1787 319001 E:info@pagerpower.com W: www.pagerpower.com

All aerial imagery (unless otherwise stated) is taken from Google Earth. Copyright © 2024 Google.

PAGERPOWER () Urban & Renewables

EXECUTIVE SUMMARY

Report Purpose

Pager Power has been retained to assess the possible effects of glint and glare from a proposed solar photovoltaic (PV) development which will be located west of Lamphey, Wales. This glint and glare study assesses the potential impacts on surrounding road safety, residential amenity, railway operations and infrastructure, and aviation activity.

Overall Conclusions

No impacts requiring mitigation are predicted on surrounding road safety, residential amenity, railway operations and infrastructure, and aviation activity.

Guidance and Studies

Guidelines exist in the UK (produced by the Civil Aviation Authority) and in the USA (produced by the Federal Aviation Administration) with respect to solar developments and aviation activity. The UK CAA guidance is relatively high-level and does not prescribe a formal methodology. Pager Power has however produced guidance for glint and glare and solar photovoltaic developments, which was first published in early 2017, with the fourth edition produced in 2022¹. The guidance document sets out the methodology for assessing road safety, residential amenity, railway operations and infrastructure, and aviation activity with respect to solar reflections from solar panels.

Pager Power's approach is to undertake geometric reflection calculations and, where a solar reflection is predicted, consider the screening (existing and/or proposed) between the receptor and the reflecting solar panels. The scenario in which a solar reflection can occur for all receptors is then identified and discussed, and a comparison is made against the available solar panel reflection studies to determine the overall impact.

The available studies have measured the intensity of reflections from solar panels with respect to other naturally occurring and manmade surfaces. The results show that the reflections produced are of intensity similar to or less than those produced from still water and significantly less than reflections from glass and steel².

 ¹Solar Photovoltaic Development Glint and Glare Guidance, Fourth Edition, August 2022. Pager Power.
 ²Source: SunPower, 2009, SunPower Solar Module Glare and Reflectance (appendix to Solargen Energy, 2010).

PAGERPOWER () Urban & Renewables

Assessment Results

Roads

There is only one road within the 1km assessment area that meets the assessment criteria, the A4139. It is clearly screened by intervening buildings, vegetation, and terrain (see section 4.2.2 for more details). Therefore, it was not taken forward for technical modelling.

Technical modelling is not recommended for local roads, where traffic densities are likely to be relatively low. Any solar reflections from the proposed development that are experienced by a road user along a local road would be considered low impact in the worst case in accordance with the guidance presented in Appendix D.

No significant impacts are predicted on road safety, and no mitigation or further assessment is recommended.

Dwellings

The modelling has shown that solar reflections are geometrically possible³ towards 58 of the 65 assessed dwelling receptors.

No significant impacts are predicted on any of the assessed dwellings, because where solar reflections are geometrically possible, there is significant screening such that views of reflecting panels are not expected to be possible in practice, or there are significant factors such as:

- Significant clearance distance between the observer and the closest reflecting panel;
- Reflections possible when the Sun is relatively low in the sky beyond the reflecting panels.

Railway

A railway line is located approximately 160m north of the proposed solar development at its nearest point. There are no sections of railway line within the typical 500m assessment area for railway operations and infrastructure, therefore technical modelling was not undertaken. It can be reasonably concluded that the effects of glint and glare would not have a significant impact upon the safety of railway operations. Mitigation is not recommended.

High-Level Aviation

Significant impacts are not predicted on aviation activity associated with Rosemarket Airfield based on the associated guidance and industry best practice. This is because:

• Solar reflections originating from the proposed development towards aircraft on the final one-mile splayed approach towards runway 08/26 would be outside of a pilot's primary horizontal field of view (50 degrees either side of the approach bearing), and would therefore not be considered significant considering the associated guidance (Appendix D) and industry best practice;

³ Only considering reflections from solar panels within 1km of the receptor. Reflections outside of 1km are not considered to be significant.

• Solar reflections originating from the proposed development towards the final sections of circuits / joins for runway thresholds 08/26 will have glare intensities no greater than 'low potential for temporary after-image'. Considering the associated guidance (Appendix D) and industry best practice, the glare intensity is considered acceptable.

Mitigation is not required and detailed modelling is not recommended.

LIST OF CONTENTS

Admir	nistrati	ion Page	2
Execu	tive S	ummary	3
	Repo	rt Purpose	
	Over	all Conclusions	
	Guid	ance and Studies	
	Asse	ssment Results	
List of	Cont	ents	6
List of	⁻ Figur	es	8
List of	⁻ Table	?5	9
About	: Page	r Power	
1	Intro	duction	11
	1.1	Overview	
	1.2	Pager Power's Experience	
	1.3	Glint and Glare Definition	
2	Prop	osed Solar Development Location and Details	
	2.1	Proposed Development Site Layout	
	2.2	Reflector Areas	
	2.3	Solar Panel Information	
3	Glint	and Glare Assessment Methodology	15
	3.1	Overview	
	3.2	Guidance and Studies	
	3.3	Background	
	3.4	Methodology	
	3.5	Assessment Methodology and Limitations	
4	Iden	tification of Receptors	
	4.1	Ground-Based Receptors Overview	
	4.2	Road Receptors	
	4.3	Dwelling Receptors	
Solar Pho	otovoltai	c Glint and Glare Study	Alleston Solar Farm 6

	4.4	Railway Receptors	34
5	Geo	metric Assessment Results and Discussion	
	5.1	Overview	35
	5.2	Dwellings	35
6	High	-Level Aviation Assessment	50
	6.1	Overview	
	6.2	High-Level Assessment	50
	6.3	Conclusions	52
7	High	-Level Assessment of Public Rights of Way	
	7.1	Overview	53
	7.2	Assessment	53
	7.3	Conclusions	54
8	Ove	rall Conclusions	
	8.1	Roads	55
	8.2	Dwellings	55
	8.3	Railway	55
	8.4	High-Level Aviation	55
	8.5	Overall Conclusions	56
Apper	ndix A	- Overview of Glint and Glare Guidance	
	Over	view	57
	UK P	lanning Policy	57
	Asse	ssment Process – Ground-Based Receptors	
	Aviat	ion Assessment Guidance	60
	Civil	Aviation Authority consolidation of UK Regulation 139/2014	65
Apper	ndix B	- Overview of Glint and Glare Studies	
	Over	view	66
	Refle	ection Type from Solar Panels	66
	Solar	Reflection Studies	67
Appendix C – Overview of Sun Movements and Relative Reflections			
Apper	ndix D	- Glint and Glare Impact Significance	71
	Over	view	71

Solar Photovoltaic Glint and Glare Study

Alleston Solar Farm 7

Impact Significance Definition	71
Assessment Process for Dwelling Receptors	72
Appendix E – Reflection Calculations Methodology	73
Pager Power's Reflection Calculations Methodology	73
Appendix F – Assessment Limitations and Assumptions	75
Pager Power's Model	75
Appendix G – Receptor and Reflector Area Details	77
Terrain Height	77
Dwelling Receptor Data	77
Appendix H – Detailed Modelling Results	80
Overview	80
Dwelling Receptors	81

LIST OF FIGURES

Figure 1 Assessed reflector areas – aerial image	12
Figure 2 Proposed development layout	13
Figure 3 Review of roads within 1km assessment area – aerial image	19
Figure 4 Assessed dwelling receptors overview – aerial image	21
Figure 5 Assessed dwelling receptors 1-18 – aerial image	22
Figure 6 Assessed dwelling receptors 19 to 20 – aerial image	23
Figure 7 Assessed dwelling receptors 21 to 22 – aerial image	24
Figure 8 Assessed dwelling receptors 23 and 24 – aerial image	25
Figure 9 Assessed dwelling receptor 26 – aerial image	26
Figure 10 Assessed dwelling receptor 27 – aerial image	27
Figure 11 Assessed dwelling receptor 28 – aerial image	28
Figure 12 Assessed dwelling receptors 29 to 50 – aerial image	29
Figure 13 Assessed dwelling receptor 51 to 58 – aerial image	30
Figure 14 Assessed dwelling receptors 59 to 60 – aerial image	31

Figure 15 Assessed dwelling receptors 61 to 63 – aerial image
Figure 16 Assessed dwelling receptors 64 to 65- aerial image
Figure 17 Proposed development and railway line location – aerial image
Figure 18 Summary of dwellings results - aerial image
Figure 19 Reflecting points (yellow circular icons) for dwelling 19
Figure 20 Terrain and vegetation screening to the east of dwelling 19 – street view image
Figure 21 Significant vegetation screening (green polygon) and building screening (pink polygon) and reflecting points for dwelling 20
Figure 22 Reflecting points for dwelling 28 and significant screening labelled
Figure 23 Vegetation screening to the west of dwellings 59 and 60 – street view image
Figure 24 Vegetation screening to the west of dwelling 61 – street view image
Figure 25 Terrain visibility for 4m agl at dwelling 62 (produced using Google Earth viewshed tool to present terrain visiblity from upper floors)
Figure 26 Reflecting points for dwelling 63 and vegetation screening (green polygon)
Figure 27 Locations of aerodrome and approach paths considered for high-level assessment
Figure 28 Proposed development relative to Pembrokeshire Coast National Park 53

LIST OF TABLES

Table 1 Solar panel information14
Table 2 Geometric modelling results, assessment of impact significance, and mitigation
recommendation/requirement – dwelling receptors

ABOUT PAGER POWER

Pager Power is a dedicated consultancy company based in Suffolk, UK. The company has undertaken projects in 59 countries internationally.

The company comprises a team of experts to provide technical expertise and guidance on a range of planning issues for large and small developments.

Pager Power was established in 1997. Initially the company focus was on modelling the impact of wind turbines on radar systems.

Over the years, the company has expanded into numerous fields including:

- Renewable energy projects.
- Building developments.
- Aviation and telecommunication systems.

Pager Power prides itself on providing comprehensive, understandable and accurate assessments of complex issues in line with national and international standards. This is underpinned by its custom software, longstanding relationships with stakeholders and active role in conferences and research efforts around the world.

Pager Power's assessments withstand legal scrutiny and the company can provide support for a project at any stage.

PAGERPOWER () Urban & Renewables

1 INTRODUCTION

1.1 Overview

Pager Power has been retained to assess the possible effects of glint and glare from a proposed solar photovoltaic (PV) development which will be located west of Lamphey, Wales. This glint and glare study assesses the potential impacts on surrounding road safety, residential amenity, railway operations and infrastructure, and aviation activity.

This report contains the following:

- Solar development details.
- Explanation of glint and glare.
- Overview of relevant guidance and studies.
- Overview of Sun movement.
- Assessment methodology.
- Identification of receptors.
- Glint and glare assessment for identified receptors.
- Results discussion.
- Overall conclusions and recommendations.

1.2 Pager Power's Experience

Pager Power has undertaken over 1,200 Glint and Glare assessments in the UK and internationally. The studies have included assessment of civil and military aerodromes, railway infrastructure and other ground-based receptors including roads and dwellings.

1.3 Glint and Glare Definition

The definition of glint and glare is as follows:

- Glint a momentary flash of bright light typically received by moving receptors or from moving reflectors.
- Glare a continuous source of bright light typically received by static receptors or from large reflective surfaces.

These definitions are aligned with those presented within the National Policy Statement for Renewable Energy Infrastructure (EN-3) – published by the Department for Business, Energy & Industrial Strategy in November 2023 and the Federal Aviation Administration in the USA.

The term 'solar reflection' is used in this report to refer to both reflection types.

2 PROPOSED SOLAR DEVELOPMENT LOCATION AND DETAILS

2.1 Proposed Development Site Layout

The proposed development layout⁴ is shown in Figure 2 on the following page. Solar panel areas are indicated by the blue rectangles.

2.2 Reflector Areas

A resolution of 10m has been chosen for this assessment. This means that a geometric calculation is undertaken for each identified receptor from a point every 10m from within the defined areas. This resolution is sufficiently high to maximise the accuracy of the results; increasing the resolution further would not significantly change the modelling output. The number of modelled reflector points are determined by the size of the reflector area and the assessment resolution. The bounding coordinates for the proposed solar development have been extrapolated from the site plans. The data can be found in Appendix G.

 Construction
 Construction

 Construction
 Construction

Figure 1 below shows the assessed reflector areas that have been used for modelling purposes.

Figure 1 Assessed reflector areas - aerial image

⁴ Source: SKUKX-ALLES-000-100.01C (20240319) PV Layout (Planning) [3P option]

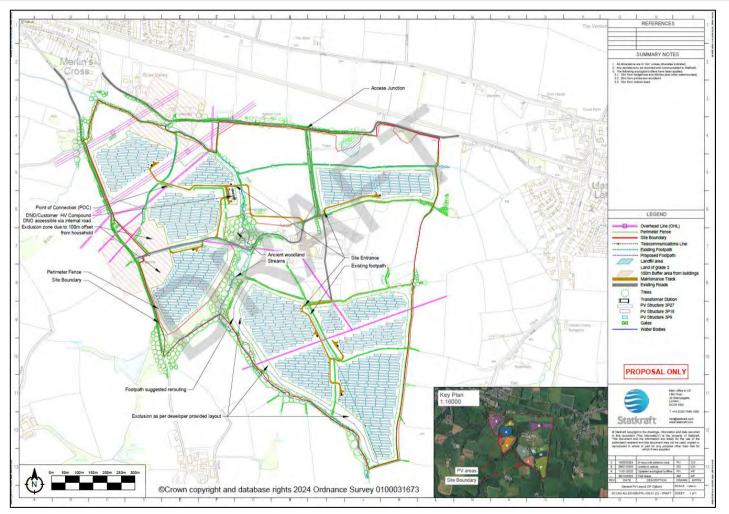


Figure 2 Proposed development layout

Solar Photovoltaic Glint and Glare Study

Alleston Farm Solar 13

2.3 Solar Panel Information

The technical information used for the modelling is presented in Table 1 below. The centre of the solar panel has been used as the assessed height in metres above ground level (agl).

Solar Panel Technical Information		
Azimuth angle ⁵	180°	
Elevation (tilt) angle ⁶	17.5°	
Assessed centre height	1.9m agl	

Table 1 Solar panel information

⁵ Direction relative to true north.

⁶ Relative to the horizontal.

3 GLINT AND GLARE ASSESSMENT METHODOLOGY

3.1 Overview

The following sub-sections provide a general overview with respect to the guidance studies and methodology which informs this report. Pager Power has also produced its own Glint and Glare Guidance which draws on assessment experience, consultation and industry expertise.

3.2 Guidance and Studies

Appendix A present a review of relevant guidance and independent studies with regard to glint and glare issues from solar panels. The overall conclusions from the available studies are as follows:

- Specular reflections of the Sun from solar panels are possible;
- The measured intensity of a reflection from solar panels can vary from 2% to 30% depending on the angle of incidence;
- Published guidance shows that the intensity of solar reflections from solar panels are equal to or less than those from water. It also shows that reflections from solar panels are significantly less intense than many other reflective surfaces, which are common in an outdoor environment.

3.3 Background

Details of the Sun's movements and solar reflections are presented in Appendix C.

3.4 Methodology

The glint and glare assessment methodology has been derived from the information provided to Pager Power through consultation with stakeholders and by reviewing the available guidance, studies and Pager Power's practical experience. The methodology for this glint and glare assessment is as follows:

- Identify receptors in the area surrounding the proposed development;
- Consider direct solar reflections from the proposed development towards the identified receptors by undertaking geometric calculations;
- Consider the visibility of the reflectors from the receptor's location. If the reflectors are not visible from the receptor then no reflection can occur;
- Based on the results of the geometric calculations, determine whether a reflection can occur, and if so, at what time it will occur;
- Consider both the solar reflection from the proposed development and the location of the direct sunlight with respect to the receptor's position;
- Consider the solar reflection with respect to the published studies and guidance;
- Determine whether a significant detrimental impact is expected in line with Appendix D.

Within the Pager Power model, the reflector area is defined, as well as the relevant receptor locations. The result is a chart that states whether a reflection can occur, the duration and the panels that can produce the solar reflection towards the receptor.

3.5 Assessment Methodology and Limitations

Further technical details regarding the methodology of the geometric calculations and limitations are presented in Appendix E and Appendix F.

4 IDENTIFICATION OF RECEPTORS

4.1 Ground-Based Receptors Overview

There is no formal guidance with regard to the maximum distance at which glint and glare should be assessed. From a technical perspective, there is no maximum distance for potential reflections. The significance of a reflection, however, decreases with distance because the proportion of an observer's field of vision that is taken up by the reflecting area diminishes as the separation distance increases. Terrain and shielding by vegetation are also more likely to obstruct an observer's view at longer distances.

The above parameters and extensive experience over a significant number of glint and glare assessments undertaken show that consideration of receptors within 1km of panel areas is appropriate for glint and glare effects on road safety and residential amenity, and consideration of receptors within 500m of panel areas is appropriate for glint and glare effects on railway operations and infrastructure. The panels are fixed south facing and solar reflections at ground level towards the north at this latitude are highly unlikely. Therefore, the assessment areas have been designed accordingly, excluding areas that are to the north of the northern-most solar panels.

Potential receptors are identified based on mapping and aerial photography of the region. The initial judgement is made based on a high-level consideration of aerial photography and mapping i.e. receptors are excluded if it is clear from the outset that no visibility would be possible. A more detailed assessment is made if the modelling reveals a reflection would be geometrically possible.

Receptor details can be found in Appendix G.

4.2 Road Receptors

4.2.1 Overview

Road types can generally be categorised as:

- Major National Typically a road with a minimum of two carriageways with a maximum speed limit of up to 70mph. These roads typically have fast-moving vehicles with busy traffic.
- National Typically a road with a one or more carriageways with a maximum speed limit of up to 60mph or 70mph. These roads typically have fast-moving vehicles with moderate to busy traffic density.
- Regional Typically a single carriageway with a maximum speed limit of up to 60mph. The speed of vehicles will vary with a typical traffic density of low to moderate; and
- Local Typically roads and lanes with the lowest traffic densities. Speed limits vary.

Technical modelling is not recommended for local roads, where traffic densities are likely to be relatively low. Any solar reflections from the proposed development that are experienced by a

road user along a local road would be considered low impact in the worst case in accordance with the guidance presented in Appendix D.

The analysis therefore considers major national, national, and regional roads that:

- Are within the one-kilometre assessment area;
- Have a potential view of the panels.

4.2.2 Identification

There is one road that meets the assessment criteria, the A4139, marked with the light blue line and labelled on Figure 3 on the following page. It is clearly screened by intervening buildings, vegetation, and terrain.

The remaining roads marked with the orange lines do not meet the assessment criteria.

Therefore, no roads were taken forward for technical modelling.

Figure 3 Review of roads within 1km assessment area – aerial image

PAGERPOWER () Urban & Renewables

4.3 Dwelling Receptors

4.3.1 Overview

The analysis has considered dwellings that:

- Are within the one-kilometre assessment area.
- Have a potential view of the panels.

In residential areas with multiple layers of dwellings, only the outer dwellings have been considered for assessment. This is because they will mostly obscure views of the solar panels to the dwellings behind them, which will therefore not be impacted by the proposed development because line of sight will be removed, or they will experience comparable effects to the closest assessed dwelling.

In some cases, one physical structure is split into multiple separate addresses. In such cases, the results for the assessed location will be applicable to all associated addresses. The sampling resolution is sufficiently high to capture the level of effect for all potentially affected dwellings.

A height of 1.8 metres above ground level has been taken as typical eye level for an observer on the ground floor⁷ of the dwelling since this is typically the most occupied floor of a dwelling throughout the day.

4.3.2 Identification

In total, 65 dwellings were identified for assessment. An overview of all assessed dwelling receptors is shown on the following pages.

⁷ This fixed height for the dwelling receptors is for modelling purposes. Small changes to the modelling height by a few metres is not expected to significantly change the modelling results. Views above ground floor are considered in the results discussion where necessary.

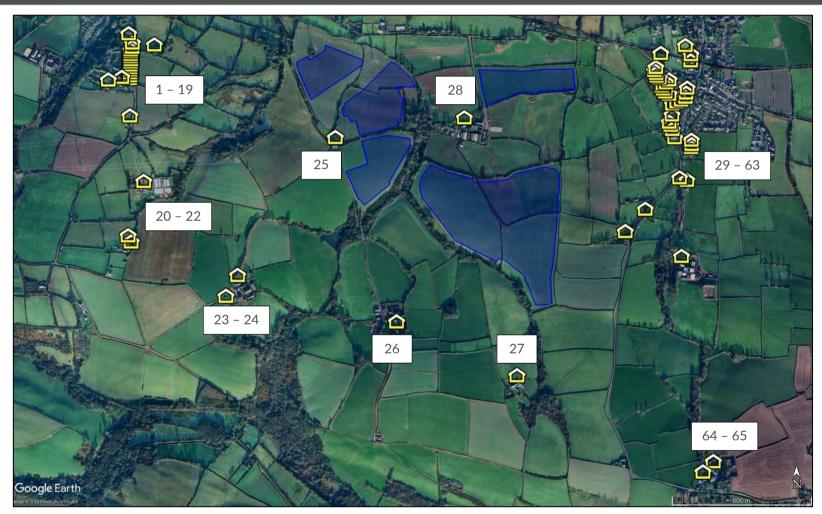


Figure 4 Assessed dwelling receptors overview – aerial image

Figure 5 Assessed dwelling receptors 1-18 – aerial image

Figure 6 Assessed dwelling receptors 19 to 20 – aerial image

Figure 7 Assessed dwelling receptors 21 to 22 – aerial image

Figure 8 Assessed dwelling receptors 23 and 24 – aerial image

Figure 9 Assessed dwelling receptor 26 – aerial image

Figure 10 Assessed dwelling receptor 27 – aerial image

Figure 11 Assessed dwelling receptor 28 - aerial image

Figure 12 Assessed dwelling receptors 29 to 50 - aerial image

Figure 13 Assessed dwelling receptor 51 to 58 – aerial image

Figure 14 Assessed dwelling receptors 59 to 60 - aerial image

Figure 15 Assessed dwelling receptors 61 to 63 – aerial image

Figure 16 Assessed dwelling receptors 64 to 65 - aerial image

PAGERPOWER () Urban & Renewables

4.4 Railway Receptors

4.4.1 Overview

Based on Pager Power's previous experience, typical reasons stated by a railway stakeholder for requesting a glint and glare assessment often relate to the following:

- An installation producing solar reflections towards train drivers;
- An installation producing solar reflections, which causes a train driver to take action; and
- An installation producing solar reflections that affect railway signals.

Network Rail usually raises concerns with respect to solar developments within approximately 100m of its infrastructure.

4.4.2 Identification

A railway line is located approximately 160m north of the proposed solar development at its nearest point. The railway runs north-west/south-east and is coloured orange in Figure 17 below, relative to the typical 500m assessment area.

There are no sections of railway line within the typical 500m assessment area for railway operations and infrastructure, therefore technical modelling was not undertaken. It can be reasonably concluded that the effects of glint and glare would not have a significant impact upon the safety of railway operations.

Figure 17 Proposed development and railway line location - aerial image

5 GEOMETRIC ASSESSMENT RESULTS AND DISCUSSION

5.1 Overview

The following sub-sections present the modelling results as well as the significance of any predicted impact in the context of existing screening, as well as the relevant criteria set out in the next subsection. The criteria are determined by the assessment process for each receptor, which are set out in Appendix D.

When determining the visibility of the reflecting panels for an observer, a conservative review of the available imagery is undertaken, whereby it is assumed views of the panels are possible if it cannot be reliably determined that existing screening will remove effects.

The modelling output showing the precise predicted times and the reflecting panel areas are presented in Appendix H.

5.2 Dwellings

5.2.1 Impact Significance Methodology

The key considerations for residential dwellings are:

- Whether a reflection is predicted to be experienced in practice;
- The duration of the predicted effects, relative to thresholds of:
 - o 3 months per year;
 - o 60 minutes on any given day.

Where solar reflections are not geometrically possible or the reflecting panels are predicted to be significantly obstructed from view, no impact is predicted, and mitigation is not required.

Where solar reflections are experienced for less than three months per year and less than 60 minutes on any given day, or the closest reflecting panel is over 1km from the dwelling, the impact significance is low, and mitigation is not recommended.

Where reflections are predicted to be experienced for more than three months per year <u>and/or</u> for more than 60 minutes on any given day, expert assessment of the following relevant factors is required to determine the impact significance and mitigation requirement:

- Whether visibility is likely from all storeys the ground floor is typically considered the main living space and has a greater significance with respect to residential amenity;
- The separation distance to the panel area larger separation distances reduce the proportion of an observer's field of view that is affected by glare;
- Whether the dwelling appears to have windows facing the reflecting area factors that restrict potential views of a reflecting area reduce the level of impact;
- The position of the Sun effects that coincide with direct sunlight appear less prominent than those that do not.

If following consideration of the relevant factors, the solar reflections do not remain significant, the impact significance is low, and mitigation is not recommended. If following consideration of the relevant factors, the solar reflections remain significant, then the impact significance is moderate, and mitigation is recommended.

If effects last for more than three months per year and for more than 60 minutes on any given day, and there are no mitigating factors, the impact significance is high, and mitigation is required.

5.2.2 Geometric Modelling Results

The modelling has shown that solar reflections are geometrically possible⁸ towards 58 of the 65 assessed dwelling receptors. A summary of the geometric results is shown in Figure 18 on the following page, where yellow icons represent receptors where solar reflections are geometrically possible, and green icons represent receptors where solar reflections are not geometrically possible.

The modelling results for dwelling receptors are analysed in more detail in Table 2. Where a low impact is predicted, blue text is used to distinguish these results.

⁸ Only considering reflections from solar panels within 1km of the receptor. Reflections outside of 1km are not considered to be significant.

Figure 18 Summary of dwellings results - aerial image

Receptor	Geometric modelling results (without consideration of screening)	Identified Screening (desk-based review)	Relevant Factors	Predicted Impact Classification	Mitigation Recommended/Required?
1	Solar reflections predicted for <u>less</u> than 60 minutes per day and for <u>less</u> than 3 months of the year 06:00-07:00 in March and September	Existing vegetation, building, and/or terrain screening Views of the reflecting panels are not predicted	N/A	None	No
2	Solar reflections are not geometrically possible	N/A	N/A	None	No
3 - 18	Solar reflections predicted for <u>less</u> than 60 minutes per day and for <u>less</u> than 3 months of the year 06:00-07:00 in March-April and August-September	Existing vegetation, building, and/or terrain screening Views of the reflecting panels are not predicted	N/A	None	No
19 - 20	Solar reflections predicted for <u>less</u> than 60 minutes per day and for <u>more</u> than 3 months of the year 06:00-07:00 in March- September	Existing vegetation, building, and/or terrain screening Views of the reflecting panels are not predicted	N/A	None	No

Receptor	Geometric modelling results (without consideration of screening)	Identified Screening (desk-based review)	Relevant Factors	Predicted Impact Classification	Mitigation Recommended/Required?
21 - 22	Solar reflections predicted for <u>less</u> than 60 minutes per day and for <u>less</u> than 3 months of the year 05:30-06:30 in April-May and July- August	Existing vegetation, building, and/or terrain screening Views of the reflecting panels are not predicted	N/A	None	No
23	Solar reflections predicted for <u>less</u> than 60 minutes per day and for <u>more</u> than 3 months of the year 05:30-06:30 in April-August	Existing vegetation, building, and/or terrain screening Views of the reflecting panels are not predicted	N/A	None	No
24	Solar reflections predicted for less than 60 minutes per day and for less than 3 months of the year 05:30-06:30 in May-JulyExisting vegetation, buildin and/or terrain screening Views of the reflecting pane are not predicted		N/A	None	No
25 - 26	Solar reflections predicted for <u>less</u> than 60 minutes per day and for <u>more</u> than 3 months of the year 05:30-07:00 in March-September	Existing vegetation, building, and/or terrain screening Views of the reflecting panels are not predicted	N/A	None	No

Receptor	Geometric modelling results (without consideration of screening)	Identified Screening (desk-based review)	Relevant Factors	Predicted Impact Classification	Mitigation Recommended/Required?
27	Solar reflections are not geometrically possible	N/A	N/A	None	No
28	Solar reflections predicted for <u>less</u> than 60 minutes per day and for <u>more</u> than 3 months of the year 05:30-06:30 in May-August and 18:00-19:00 in March-September	Existing vegetation, building, and/or terrain screening Views of the reflecting panels are not predicted	N/A	None	No
29 - 31	Solar reflections are not geometrically possible	N/A	N/A	None	No
32 - 40	Solar reflections predicted for <u>less</u> than 60 minutes per day and for <u>less</u> than 3 months of the year 18:00-19:00 in March- September	Existing vegetation, building, and/or terrain screening Views of the reflecting panels are not predicted	N/A	None	No

Receptor	Geometric modelling results (without consideration of screening)	Identified Screening (desk-based review)	Relevant Factors	Predicted Impact Classification	Mitigation Recommended/Required?
41 - 58	Solar reflections predicted for <u>less</u> than 60 minutes per day and for <u>more</u> than 3 months of the year 18:00-19:00 in March-September	Some existing vegetation, building, and/or terrain screening Views of the majority of the reflecting panels are predicted to be filtered or not possible	Closest reflecting panels are at least 370m away Reflections possible within 2 hours of sunset when the Sun is relatively low in the sky beyond the reflecting panels	Low	No
59 - 63	Solar reflections predicted for <u>less</u> than 60 minutes per day and for <u>more</u> than 3 months of the year 18:00-19:00 in March-September	Existing vegetation, building, and/or terrain screening Views of the reflecting panels are not predicted	N/A	None	No
64 - 65	Solar reflections are not geometrically possible	N/A	N/A	None	No

 Table 2 Geometric modelling results, assessment of impact significance, and mitigation recommendation/requirement – dwelling receptors

5.2.3 Screening Review

The following pages show a selection of images detailing some of the significant screening for the assessed receptors which receive solar reflections for **more** than 3 months of the year. Reflective points are signified by the yellow circular icons.

Figure 19 Reflecting points (yellow circular icons) for dwelling 19

Figure 20 Terrain and vegetation screening to the east of dwelling 19 - street view image

Figure 21 Significant vegetation screening (green polygon) and building screening (pink polygon) and reflecting points for dwelling 20

Figure 22 Reflecting points for dwelling 28 and significant screening labelled

Figure 23 Vegetation screening to the west of dwellings 59 and 60 - street view image

Figure 24 Vegetation screening to the west of dwelling 61 – street view image

Figure 25 Terrain visibility for 4m agl at dwelling 62 (produced using Google Earth viewshed tool to present terrain visibility from upper floors)

Figure 26 Reflecting points for dwelling 63 and vegetation screening (green polygon)

6 HIGH-LEVEL AVIATION ASSESSMENT

6.1 Overview

Glint and glare analysis is often undertaken for solar developments that are adjacent to large aerodromes. The most common concerns are:

- 1. Potential reflections towards an Air Traffic Control (ATC) tower.
- 2. Potential reflections towards approaching pilots of powered aircraft for the final two miles of the approach.

With regard to Point 2, these reflections are typically evaluated in the context of:

- Whether they are in a pilot's primary horizontal field of view (50° either side of the direction of travel).
- The intensity of the solar reflection.

There is no formal distance within which aviation effects must be modelled. However, in practice, concerns are most often raised for developments within 10km of a licensed airport. Requests for modelling at ranges of 10-20km are far less common. Assessment of aviation effects for developments over 20km away is a very unusual requirement.

Rosemarket Airfield is an unlicensed airfield located within 10km of the proposed development and has therefore been considered within this high-level assessment. The proposed development size, distance between the aerodrome and proposed development and industry experience are considered to determine the potential impact.

6.2 High-Level Assessment

Rosemarket Airfield is an unlicensed aerodrome approximately 9.7km northwest of the proposed development with one operational runway and is understood not to have an Air Traffic Control (ATC) Tower. The runway details⁹ are presented below:

• 08/26 measuring 600 metres by 15 metres (grass).

The location of the aerodrome's 1-mile splayed runway approach paths¹⁰ (pink coloured polygons) relative to the proposed development are shown in Figure 27 on the following page.

⁹ Source: Pooley's Flight Guide 2023

¹⁰ As per Pager Power's typical assessment methodology for unlicensed general aviation airfields such as this

Figure 27 Locations of aerodrome and approach paths considered for high-level assessment

Significant impacts are not predicted on aviation activity associated with Rosemarket Airfield based on the associated guidance and industry best practice. This is because:

- Solar reflections originating from the proposed development towards aircraft on the final one-mile splayed approach towards runway 08/26 would be outside of a pilot's primary horizontal field of view (50 degrees either side of the approach bearing), and would therefore not be considered significant considering the associated guidance (Appendix D) and industry best practice;
- Solar reflections originating from the proposed development towards the final sections of circuits / joins for runway thresholds 08/26 will have glare intensities no greater than 'low potential for temporary after-image'. Considering the associated guidance (Appendix D) and industry best practice, the glare intensity is considered acceptable.

6.3 Conclusions

No significant impacts upon aviation activity associated with Rosemarket Airfield are predicted, and mitigation is not required. Detailed modelling is not recommended.

7 HIGH-LEVEL ASSESSMENT OF PUBLIC RIGHTS OF WAY

7.1 Overview

The following section presents a high-level overview of glint and glare concerns for public rights of way and the Pembrokeshire Coast National Park.

7.2 Assessment

Figure 28 below shows the location of the Pembrokeshire Coast National Park (outlined green) relative to the proposed development.

Figure 28 Proposed development relative to Pembrokeshire Coast National Park

In Pager Power's experience, significant impacts from glint and glare are not possible upon pedestrians/observers along PRoW. The reasoning is due to the sensitivity of the receptors (in terms of amenity and safety) being concluded to be of low significance due to:

- The typical density of pedestrians at these locations is usually low;
- Any resultant effect is much less serious and has far lesser consequences than, for example, solar reflections experienced towards a road network whereby the resultant impacts of a solar reflection can be much more serious to safety;
- Glint and glare effects towards receptors are transient, and time and location sensitive whereby a pedestrian could move beyond the solar reflection zone with ease with little impact upon safety or amenity;
- There is no safety hazard associated with reflections towards an observer on a footpath.

Furthermore, any impact will be of a low magnitude when considering the worst case due-to:

- The existing screening is predicted significantly reduce/obstruct the visibility of the proposed development for pedestrian/observers;
- Solar reflections towards observers could therefore be experienced under certain conditions (typically within a few hours of sunrise/sunset i.e. when the Sun is low in the sky beyond the panels). Therefore, if effects are possible and unscreened, they would typically coincide the Sun, a far more significant source of light;
- The reflection intensity is similar for solar panels and still water (and significantly less than reflections from glass and steel¹¹) which is frequently a feature of the outdoor environment. Therefore, the reflections are likely to be comparable to those from common outdoor sources whilst navigating the natural and built environment on a regular basis.

7.3 Conclusions

No significant impact is predicted upon public rights of way and the Pembrokeshire Coast National Park. Mitigation is not required.

¹¹ SunPower, 2009, SunPower Solar Module Glare and Reflectance (appendix to Solargen Energy, 2010).

8 OVERALL CONCLUSIONS

8.1 Roads

There is only one road within the 1km assessment area that meets the assessment criteria, the A4139. It is clearly screened by intervening buildings, vegetation, and terrain (see section 4.2.2 for more details). Therefore, it was not taken forward for technical modelling.

Technical modelling is not recommended for local roads, where traffic densities are likely to be relatively low. Any solar reflections from the proposed development that are experienced by a road user along a local road would be considered low impact in the worst case in accordance with the guidance presented in Appendix D.

No significant impacts are predicted on road safety, and no mitigation or further assessment is recommended.

8.2 Dwellings

The modelling has shown that solar reflections are geometrically possible¹² towards 58 of the 65 assessed dwelling receptors.

No significant impacts are predicted on any of the assessed dwellings, because where solar reflections are geometrically possible, there is significant screening such that views of reflecting panels are not expected to be possible in practice, or there are significant factors such as:

- Significant clearance distance between the observer and the closest reflecting panel;
- Reflections possible when the Sun is relatively low in the sky beyond the reflecting panels.

8.3 Railway

A railway line is located approximately 160m north of the proposed solar development at its nearest point. There are no sections of railway line within the typical 500m assessment area for railway operations and infrastructure, therefore technical modelling was not undertaken. It can be reasonably concluded that the effects of glint and glare would not have a significant impact upon the safety of railway operations.

8.4 High-Level Aviation

Significant impacts are not predicted on aviation activity associated with Rosemarket Airfield based on the associated guidance and industry best practice. This is because:

• Solar reflections originating from the proposed development towards aircraft on the final one-mile splayed approach towards runway 08/26 would be outside of a pilot's primary horizontal field of view (50 degrees either side of the approach bearing), and would

¹² Only considering reflections from solar panels within 1km of the receptor. Reflections outside of 1km are not considered to be significant.

therefore not be considered significant considering the associated guidance (Appendix D) and industry best practice;

• Solar reflections originating from the proposed development towards the final sections of circuits / joins for runway thresholds 08/26 will have glare intensities no greater than 'low potential for temporary after-image'. Considering the associated guidance (Appendix D) and industry best practice, the glare intensity is considered acceptable.

Mitigation is not required and detailed modelling is not recommended.

8.5 Overall Conclusions

No impacts requiring mitigation are predicted on surrounding road safety, residential amenity, railway operations and infrastructure, and aviation activity.

APPENDIX A - OVERVIEW OF GLINT AND GLARE GUIDANCE

Overview

This section presents details regarding the relevant guidance and studies with respect to the considerations and effects of solar reflections from solar panels, known as 'Glint and Glare'.

This is not a comprehensive review of the data sources, rather it is intended to give an overview of the important parameters and considerations that have informed this assessment.

UK Planning Policy

Renewable and Low Carbon Energy

The National Planning Policy Framework under the planning practice guidance for Renewable and Low Carbon Energy¹³ (specifically regarding the consideration of solar farms, paragraph 013) states:

'What are the particular planning considerations that relate to large scale ground-mounted solar photovoltaic Farms?

The deployment of large-scale solar farms can have a negative impact on the rural environment, particularly in undulating landscapes. However, the visual impact of a well-planned and well-screened solar farm can be properly addressed within the landscape if planned sensitively.

Particular factors a local planning authority will need to consider include:

•••

- the proposal's visual impact, the effect on landscape of glint and glare (see guidance on landscape assessment) and on <u>neighbouring uses and aircraft safety</u>;
- the extent to which there may be additional impacts if solar arrays follow the daily movement of the sun;

•••

The approach to assessing cumulative landscape and visual impact of large scale solar farms is likely to be the same as assessing the impact of wind turbines. However, in the case of ground-mounted solar panels it should be noted that with effective screening and appropriate land topography the area of a zone of visual influence could be zero.'

¹³ <u>Renewable and low carbon energy</u>, Ministry of Housing, Communities & Local Government, date: 18 June 2015, accessed on: 01/11/2021

National Policy Statement for Renewable Energy Infrastructure

The National Policy Statement for Renewable Energy Infrastructure (EN-3)¹⁴ sets out the primary policy for decisions by the Secretary of State for nationally significant renewable energy infrastructure. Sections 2.10.102-106 state:

- ^{'2.10.102} Solar panels are specifically designed to absorb, not reflect, irradiation.¹⁵ However, solar panels may reflect the sun's rays at certain angles, causing glint and glare. Glint is defined as a momentary flash of light that may be produced as a direct reflection of the sun in the solar panel. Glare is a continuous source of excessive brightness experienced by a stationary observer located in the path of reflected sunlight from the face of the panel. The effect occurs when the solar panel is stationed between or at an angle of the sun and the receptor.
- 2.10.103 Applicants should map receptors to qualitatively identify potential glint and glare issues and determine if a glint and glare assessment is necessary as part of the application.
- 2.10.104 When a quantitative glint and glare assessment is necessary, applicants are expected to consider the geometric possibility of glint and glare affecting nearby receptors and provide an assessment of potential impact and impairment based on the angle and duration of incidence and the intensity of the reflection.
- 2.10.105 The extent of reflectivity analysis required to assess potential impacts will depend on the specific project site and design. This may need to account for 'tracking' panels if they are proposed as these may cause differential diurnal and/or seasonal impacts.
- 2.10.106 When a glint and glare assessment is undertaken, the potential for solar PV panels, frames and supports to have a combined reflective quality may need to be assessed, although the glint and glare of the frames and supports is likely to be significantly less than the panels.'

The EN-3 does not state which receptors should be considered as part of a quantitative glint and glare assessment. Based on Pager Power's extensive project experience, typical receptors include residential dwellings, road users, aviation infrastructure, and railway infrastructure.

Sections 2.10.134-136 state:

- ^{(2.10.134} Applicants should consider using, and in some cases the Secretary of State may require, solar panels to comprise of (or be covered with) anti-glare/anti-reflective coating with a specified angle of maximum reflection attenuation for the lifetime of the permission.
- 2.10.135 Applicants may consider using screening between potentially affected receptors and the reflecting panels to mitigate the effects.
- 2.10.136 Applicants may consider adjusting the azimuth alignment of or changing the elevation tilt angle of a solar panel, within the economically viable range, to alter the angle of incidence.

¹⁴ <u>National Policy Statement for Renewable Energy Infrastructure (EN-3)</u>, Department for Energy Security & Net Zero, date: November 2023, accessed on: 21/12/2023.

¹⁵ 'Most commercially available solar panels are designed with anti-reflective glass or are produced with anti-reflective coating and have a reflective capacity that is generally equal to or less hazardous than other objects typically found in the outdoor environment, such as bodies of water or glass buildings.'

In practice this is unlikely to remove the potential impact altogether but in marginal cases may contribute to a mitigation strategy.'

The mitigation strategies listed within the EN-3 are relevant strategies that are frequently utilised to eliminate or reduce glint and glare effects towards surrounding observers. The most common form of mitigation is the implementation of screening along the site boundary.

Sections 2.10.158-159 state:

- 2.10.158 Solar PV panels are designed to absorb, not reflect, irradiation. However, the Secretary of State should assess the potential impact of glint and glare on nearby homes, motorists, public rights of way, and aviation infrastructure (including aircraft departure and arrival flight paths).
- 2.10.159 Whilst there is some evidence that glint and glare from solar farms can be experienced by pilots and air traffic controllers in certain conditions, there is no evidence that glint and glare from solar farms results in significant impairment on aircraft safety. Therefore, unless a significant impairment can be demonstrated, the Secretary of State is unlikely to give any more than limited weight to claims of aviation interference because of glint and glare from solar farms.

The EN-3 goes some way in acknowledging that the issue is more complex than presented in the early draft issues; though, this is still unlikely to be welcomed by aviation stakeholders, who will still request a glint and glare assessment on the basis that glare may lead to a potentially significant impact upon aviation safety.

Finally, the EN-3 relates solely to nationally significant renewable energy infrastructure and therefore does not apply to all planning applications for solar farms.

Assessment Process - Ground-Based Receptors

No process for determining and contextualising the effects of glint and glare has been determined when assessing the impact of solar reflections upon surrounding roads and dwellings. Therefore, the Pager Power approach is to determine whether a reflection from the proposed solar development is geometrically possible and then to compare the results against the relevant guidance/studies to determine whether the reflection is significant. The Pager Power approach has been informed by the policy presented above, current studies (presented in Appendix B) and stakeholder consultation. Further information can be found in Pager Power's Glint and Glare Guidance document¹⁶ which was produced due to the absence of existing guidance and a specific standardised assessment methodology.

¹⁶ Solar Photovoltaic Development Glint and Glare Guidance, Fourth Edition, September 2022. Pager Power.

Aviation Assessment Guidance

The UK Civil Aviation Authority (CAA) issued interim guidance relating to Solar Photovoltaic Systems (SPV) on 17 December 2010 and was subject to a CAA information alert 2010/53. The formal policy was cancelled on September 7th, 2012¹⁷ however the advice is still applicable¹⁸ until a formal policy is developed. The relevant aviation guidance from the CAA is presented in the section below.

CAA Interim Guidance

This interim guidance makes the following recommendations (p.2-3):

'8. It is recommended that, as part of a planning application, the SPV developer provide safety assurance documentation (including risk assessment) regarding the full potential impact of the SPV installation on aviation interests.

9. Guidance on safeguarding procedures at CAA licensed aerodromes is published within CAP 738 Safeguarding of Aerodromes and advice for unlicensed aerodromes is contained within CAP 793 Safe Operating Practices at Unlicensed Aerodromes.

10. Where proposed developments in the vicinity of aerodromes require an application for planning permission the relevant LPA normally consults aerodrome operators or NATS when aeronautical interests might be affected. This consultation procedure is a statutory obligation in the case of certain major airports, and may include military establishments and certain air traffic surveillance technical sites. These arrangements are explained in Department for Transport Circular 1/2003 and for Scotland, Scottish Government Circular 2/2003.

11. In the event of SPV developments proposed under the Electricity Act, the relevant government department should routinely consult with the CAA. There is therefore no requirement for the CAA to be separately consulted for such proposed SPV installations or developments.

12. If an installation of SPV systems is planned on-aerodrome (i.e. within its licensed boundary) then it is recommended that data on the reflectivity of the solar panel material should be included in any assessment before installation approval can be granted. Although approval for installation is the responsibility of the ALH¹⁹, as part of a condition of a CAA Aerodrome Licence, the ALH is required to obtain prior consent from CAA Aerodrome Standards Department before any work is begun or approval to the developer or LPA is granted, in accordance with the procedures set out in CAP 791 Procedures for Changes to Aerodrome Infrastructure.

13. During the installation and associated construction of SPV systems there may also be a need to liaise with nearby aerodromes if cranes are to be used; CAA notification and permission is not required.

14. The CAA aims to replace this informal guidance with formal policy in due course and reserves the right to cancel, amend or alter the guidance provided in this document at its discretion upon receipt of new information.

¹⁷ Archived at Pager Power

 $^{^{\}mbox{\tiny 18}}$ Reference email from the CAA dated 19/05/2014.

¹⁹ Aerodrome Licence Holder.

15. Further guidance may be obtained from CAA's Aerodrome Standards Department via aerodromes@caa.co.uk.'

FAA Guidance

The most comprehensive guidelines available for the assessment of solar developments near aerodromes has been produced by the United States Federal Aviation Administration (FAA). The first guidelines were produced initially in November 2010 and updated in 2013. A final policy was released in 2021, which superseded the interim guidance.

The 2010 document is entitled 'Technical Guidance for Evaluating Selected Solar Technologies on Airports'²⁰, the 2013 update is entitled 'Interim Policy, FAA Review of Solar Energy System Projects on Federally Obligated Airports'²¹, and the 2021 final policy is entitled 'Federal Aviation Administration Policy: Review of Solar Energy System Projects on Federally-Obligated Airports'²².

Key excerpts from the final policy are presented below:

Initially, FAA believed that solar energy systems could introduce a novel glint and glare effect to pilots on final approach. FAA has subsequently concluded that in most cases, the glint and glare from solar energy systems to pilots on final approach is similar to glint and glare pilots routinely experience from water bodies, glass-façade buildings, parking lots, and similar features. However, FAA has continued to receive reports of potential glint and glare from on-airport solar energy systems on personnel working in ATCT cabs. Therefore, FAA has determined the scope of agency policy should be focused on the impact of on-airport solar energy systems to federally-obligated towered airports, specifically the airport's ATCT cabs.

The policy in this document updates and replaces the previous policy by encouraging airport sponsors to conduct an ocular analysis of potential impacts to ATCT cabs prior to submittal of a Notice of Proposed Construction or Alteration Form 7460-1 (hereinafter Form 7460-1). Airport sponsors are no longer required to submit the results of an ocular analysis to FAA. Instead, to demonstrate compliance with 14 CFR 77.5(c), FAA will rely on the submittal of Form 7460-1 in which the sponsor confirms that it has analyzed the potential for glint and glare and determined there is no potential for ocular impact to the airport's ATCT cab. This process will enable FAA to evaluate the solar energy system project, with assurance that the system will not impact the ATCT cab.

FAA encourages airport sponsors of federally-obligated towered airports to conduct a sufficient analysis to support their assertion that a proposed solar energy system will not result in ocular impacts. There are several tools available on the open market to airport sponsors that can analyze potential glint and glare to an ATCT cab. For proposed systems that will clearly not impact ATCT cabs (e.g., onairport solar energy systems that are blocked from the ATCT cab's view by another structure), the use

²⁰ Archived at Pager Power

²¹ <u>Interim Policy, FAA Review of Solar Energy System Projects on Federally Obligated Airports</u>, Department of Transportation, Federal Aviation Administration (FAA), date: 10/2013, accessed on: 08/12/2021.

²² Federal Aviation Administration Policy: Review of Solar Energy System Projects on Federally-Obligated Airports, Federal Aviation Administration, date: May 2021, accessed on: 08/12/2021.

of such tools may not be necessary to support the assertion that a proposed solar energy system will not result in ocular impacts.

The excerpt above states where a solar PV development is to be located on a federally obligated aerodrome with an ATC Tower, it will require a glint and glare assessment to accompany its application. It states that pilots on approach are no longer a specific assessment requirement due to effects from solar energy systems being similar to glint and glare pilots routinely experience from water bodies, glass-façade buildings, parking lots, and similar features. Ultimately it comes down to the specific aerodrome to ensure it is adequately safeguarded, and it is on this basis that glint and glare assessments are routinely still requested.

The policy also states that several different tools and methodologies can be used to assess the impacts of glint and glare, which was previously required to be undertaken by the Solar Glare Hazard Analysis Tool (SGHAT) using the Sandia National Laboratories methodology.

In 2018, the FAA released the latest version (Version 1.1) of the '*Technical Guidance for Evaluating Selected Solar Technologies on Airports*'²³. Whilst the 2021 final policy also supersedes this guidance, many of the points are still relevant because aerodromes are still safeguarding against glint and glare irrespective of the FAA guidance. The key points are presented below for reference:

- Reflectivity refers to light that is reflected off surfaces. The potential effects of reflectivity are glint (a momentary flash of bright light) and glare (a continuous source of bright light). These two effects are referred to hereinafter as "glare," which can cause a brief loss of vision, also known as flash blindness²⁴.
- The amount of light reflected off a solar panel surface depends on the amount of sunlight hitting the surface, its surface reflectivity, geographic location, time of year, cloud cover, and solar panel orientation.
- As illustrated on Figure 16²⁵, flat, smooth surfaces reflect a more concentrated amount of sunlight back to the receiver, which is referred to as specular reflection. The more a surface is polished, the more it shines. Rough or uneven surfaces reflect light in a diffused or scattered manner and, therefore, the light will not be received as bright.
- Because the FAA has no specific standards for airport solar facilities and potential glare, the type of glare analysis may vary. Depending on site specifics (e.g., existing land uses, location and size of the project) an acceptable evaluation could involve one or more of the following levels of assessment:
 - A qualitative analysis of potential impact in consultation with the Control Tower, pilots and airport officials;

²³ <u>Technical Guidance for Evaluating Selected Solar Technologies on Airports</u>, Federal Aviation Administration (FAA), date: 04/2018, accessed on: 08/12/2021.

²⁴ Flash Blindness, as described in the FAA guidelines, can be described as a temporary visual interference effect that persists after the source of illumination has ceased. This occurs from many reflective materials in the ambient environment.

²⁵ First figure in Appendix B.

- A demonstration field test with solar panels at the proposed site in coordination with FAA Tower personnel;
- A geometric analysis to determine days and times when an impact is predicted.
- The extent of reflectivity analysis required to assess potential impacts will depend on the specific project site and system design.
- **1.** Assessing Baseline Reflectivity Conditions Reflection in the form of glare is present in current aviation operations. The existing sources of glare come from glass windows, auto surface parking, rooftops, and water bodies. At airports, existing reflecting surfaces may include hangar roofs, surface parking, and glassy office buildings. To minimize unexpected glare, windows of air traffic control towers and airplane cockpits are coated with anti-reflective glazing. Operators also wear polarized eye wear. Potential glare from solar panels should be viewed in this context. Any airport considering a solar PV project should first review existing sources of glare at the airport and the effectiveness of measures used to mitigate that glare.
- 2. Tests in the Field Potential glare from solar panels can easily be viewed at the airport through a field test. A few airports have coordinated these tests with FAA Air Traffic Controllers to assess the significance of glare impacts. To conduct such a test, a sponsor can take a solar panel out to proposed location of the solar project, and tilt the panel in different directions to evaluate the potential for glare onto the air traffic control tower. For the two known cases where a field test was conducted, tower personnel determined the glare was not significant. If there is a significant glare impact, the project can be modified by ensuring panels are not directed in that direction.
- **3. Geometric Analysis** Geometric studies are the most technical approach for reflectivity issues. They are conducted when glare is difficult to assess through other methods. Studies of glare can employ geometry and the known path of the sun to predict when sunlight will reflect off of a fixed surface (like a solar panel) and contact a fixed receptor (e.g., control tower). At any given site, the sun moves across the sky every day and its path in the sky changes throughout year. This in turn alters the destination of the resultant reflections since the angle of reflection for the solar panels will be the same as the angle at which the sun hits the panels. The larger the reflective surface, the greater the likelihood of glare impacts.
- Facilities placed in remote locations, like the desert, will be far from receptors and therefore potential impacts are limited to passing aircraft. Because the intensity of the light reflected from the solar panel decreases with increasing distance, an appropriate question is how far you need to be from a solar reflected surface to avoid flash blindness. It is known that this distance is directly proportional to the size of the array in question²⁶ but still requires further research to definitively answer.
- Experiences of Existing Airport Solar Projects Solar installations are presently operating at a number of airports, including megawatt-sized solar facilities covering multiple acres. Air

²⁶ Ho, Clifford, Cheryl Ghanbari, and Richard Diver. 2009. Hazard Analysis of Glint and Glare From Concentrating Solar Power Plants. SolarPACES 2009, Berlin Germany. Sandia National Laboratories.

traffic control towers have expressed concern about glint and glare from a small number of solar installations. These were often instances when solar installations were sited between the tower and airfield, or for installations with inadequate or no reflectivity analysis. Adequate reflectivity analysis and alternative siting addressed initial issues at those installations.

Air Navigation Order (ANO) 2016

In some instances, an aviation stakeholder can refer to the ANO 2016²⁷ with regard to safeguarding. Key points from the document are presented below.

Lights liable to endanger

224. (1) A person must not exhibit in the United Kingdom any light which-

(a) by reason of its glare is liable to endanger aircraft taking off from or landing at an aerodrome; or

(b) by reason of its liability to be mistaken for an aeronautical ground light is liable to endanger aircraft.

(2) If any light which appears to the CAA to be a light described in paragraph (1) is exhibited, the CAA may direct the person who is the occupier of the place where the light is exhibited or who has charge of the light, to take such steps within a reasonable time as are specified in the direction—

(a) to extinguish or screen the light; and

(b) to prevent in the future the exhibition of any other light which may similarly endanger aircraft.

(3) The direction may be served either personally or by post, or by affixing it in some conspicuous place near to the light to which it relates.

(4) In the case of a light which is or may be visible from any waters within the area of a general lighthouse authority, the power of the CAA under this article must not be exercised except with the consent of that authority.

Lights which dazzle or distract

225. A person must not in the United Kingdom direct or shine any light at any aircraft in flight so as to dazzle or distract the pilot of the aircraft.'

The document states that no 'light', 'dazzle' or 'glare' should be produced which will create a detrimental impact upon aircraft safety.

Endangering safety of an aircraft

240. A person must not recklessly or negligently act in a manner likely to endanger an aircraft, or any person in an aircraft.

Endangering safety of any person or property

²⁷ The Air Navigation Order 2016. [online] Available at:

<a>https://www.legislation.gov.uk/uksi/2016/765/contents/made> [Accessed 4 February 2022].

241. A person must not recklessly or negligently cause or permit an aircraft to endanger any person or property.

Civil Aviation Authority consolidation of UK Regulation 139/2014

The Civil Aviation Authority (CAA) published a consolidating document²⁸ of UK regulations, (Implementing Rules, Acceptable Means of Compliance and Guidance Material), in 2023. A summary of material relevant to aerodrome safeguarding is presented below:

(a) The aerodrome operator should have procedures to monitor the changes in the obstacle environment, marking and lighting, and in human activities or land use on the aerodrome and the areas around the aerodrome, as defined in coordination with the CAA. The scope, limits, tasks and responsibilities for the monitoring should be defined in coordination with the relevant air traffic services providers, and with the CAA and other relevant authorities.

(b) The limits of the aerodrome surroundings that should be monitored by the aerodrome operator are defined in coordination with the CAA and should include the areas that can be visually monitored during the inspections of the manoeuvring area.

(c) The aerodrome operator should have procedures to mitigate the risks associated with changes on the aerodrome and its surroundings identified with the monitoring procedures. The scope, limits, tasks, and responsibilities for the mitigation of risks associated to obstacles or hazards outside the perimeter fence of the aerodrome should be defined in coordination with the relevant air traffic services providers, and with the CAA and other relevant authorities.

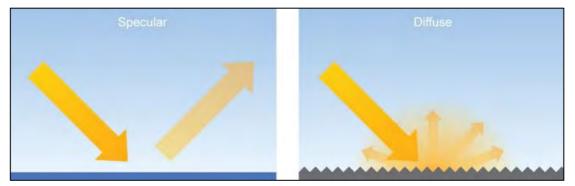
(d) The risks caused by human activities and land use which should be assessed and mitigated should include:

- 1. obstacles and the possibility of induced turbulence;
- 2. the use of hazardous, confusing, and misleading lights;
- 3. the dazzling caused by large and highly reflective surfaces;
- 4. sources of non-visible radiation, or the presence of moving, or fixed objects which may interfere with, or adversely affect, the performance of aeronautical communications, navigation and surveillance systems; and

non-aeronautical ground light near an aerodrome which may endanger the safety of aircraft and which should be extinguished, screened, or otherwise modified so as to eliminate the source of danger.

²⁸ https://regulatorylibrary.caa.co.uk/139-2014-pdf/PDF.pdf

APPENDIX B - OVERVIEW OF GLINT AND GLARE STUDIES


Overview

Studies have been undertaken assessing the type and intensity of solar reflections from various surfaces including solar panels and glass. An overview of these studies is presented below.

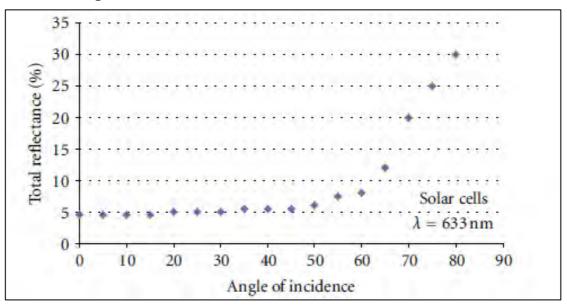
The guidelines presented are related to aviation safety. The results are applicable for the purpose of this analysis.

Reflection Type from Solar Panels

Based on the surface conditions reflections from light can be specular and diffuse. A specular reflection has a reflection characteristic similar to that of a mirror; a diffuse will reflect the incoming light and scatter it in many directions. The figure below, taken from the FAA guidance²⁹, illustrates the difference between the two types of reflections. Because solar panels are flat and have a smooth surface most of the light reflected is specular, which means that incident light from a specific direction is reradiated in a specific direction.

Specular and diffuse reflections

²⁹ <u>Technical Guidance for Evaluating Selected Solar Technologies on Airports</u>, Federal Aviation Administration (FAA), date: 04/2018, last accessed on: 19/12/2023.



Solar Reflection Studies

An overview of content from identified solar panel reflectivity studies is presented in the subsections below.

Evan Riley and Scott Olson, "A Study of the Hazardous Glare Potential to Aviators from Utility-Scale Flat-Plate Photovoltaic Systems"

Evan Riley and Scott Olson published in 2011 their study titled: A Study of the Hazardous Glare Potential to Aviators from Utility-Scale Flat-Plate Photovoltaic Systems³⁰". They researched the potential glare that a pilot could experience from a 25-degree fixed tilt PV system located outside of Las Vegas, Nevada. The theoretical glare was estimated using published ocular safety metrics which quantify the potential for a postflash glare after-image. This was then compared to the postflash glare after-image caused by smooth water. The study demonstrated that the reflectance of the solar cell varied with angle of incidence, with maximum values occurring at angles close to 90 degrees. The reflectance values varied from approximately 5% to 30%. This is shown on the figure below.

Total reflectance % when compared to angle of incidence

The conclusions of the research study were:

- The potential for hazardous glare from flat-plate PV systems is similar to that of smooth water;
- Portland white cement concrete (which is a common concrete for runways), snow, and structural glass all have a reflectivity greater than water and flat plate PV modules.

³⁰ Evan Riley and Scott Olson, "A Study of the Hazardous Glare Potential to Aviators from Utility-Scale Flat-Plate Photovoltaic Systems," ISRN Renewable Energy, vol. 2011, Article ID 651857, 6 pages, 2011. doi:10.5402/2011/651857

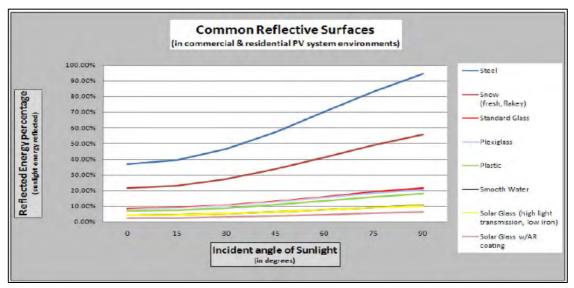
FAA Guidance - "Technical Guidance for Evaluating Selected Solar Technologies on Airports"29

The 2018 FAA Guidance included a diagram which illustrates the relative reflectance of solar panels compared to other surfaces. The figure shows the relative reflectance of solar panels compared to other surfaces. Surfaces in this figure produce reflections which are specular and diffuse. A specular reflection (those made by most solar panels) has a reflection characteristic similar to that of a mirror. A diffuse reflection will reflect the incoming light and scatter it in many directions. A table of reflectivity values, sourced from the figure within the FAA guidance, is presented below.

Surface	Approximate Percentage of Light Reflected ³¹
Snow	80
White Concrete	77
Bare Aluminium	74
Vegetation	50
Bare Soil	30
Wood Shingle	17
Water	5
Solar Panels	5
Black Asphalt	2

Relative reflectivity of various surfaces

Note that the data above does not appear to consider the reflection type (specular or diffuse).


An important comparison in this table is the reflectivity compared to water which will produce a reflection of very similar intensity when compared to that from a solar panel. The study by Riley and Olsen study (2011) also concludes that still water has a very similar reflectivity to solar panels.

 $^{^{31}}$ Extrapolated data, baseline of 1,000 W/m² for incoming sunlight.

SunPower Technical Notification (2009)

SunPower published a technical notification³² to 'increase awareness concerning the possible glare and reflectance impact of PV Systems on their surrounding environment'.

The figure presented below shows the relative reflectivity of solar panels compared to other natural and manmade materials including smooth water, standard glass and steel.

Common reflective surfaces

The results, similarly to those from Riley and Olsen study (2011) and the FAA (2010), show that solar panels produce a reflection that is less intense than those of 'standard glass and other common reflective surfaces'.

With respect to aviation and solar reflections observed from the air, SunPower has developed several large installations near airports or on Air Force bases. It is stated that these developments have all passed FAA or Air Force standards with all developments considered "No Hazard to Air Navigation". The note suggests that developers discuss any possible concerns with stakeholders near proposed solar farms.

³² Source: Technical Support, 2009. SunPower Technical Notification – Solar Module Glare and Reflectance.

APPENDIX C – OVERVIEW OF SUN MOVEMENTS AND RELATIVE REFLECTIONS

The Sun's position in the sky can be accurately described by its azimuth and elevation. Azimuth is a direction relative to true north (horizontal angle i.e. from left to right) and elevation describes the Sun's angle relative to the horizon (vertical angle i.e. up and down).

The Sun's position can be accurately calculated for a specific location. The following data being used for the calculation:

- Time.
- Date.
- Latitude.
- Longitude.

The following is true at the location of the solar development:

- The Sun is at its highest around midday and is to the south at this time.
- The Sun rises highest on 21 June (longest day).
- On 21 December, the maximum elevation reached by the Sun is at its lowest (shortest day).

The combination of the Sun's azimuth angle and vertical elevation will affect the direction and angle of the reflection from a reflector. The figure below shows terrain at the horizon as well as the sunrise and sunset curves throughout the year from lon:-4.888759 lat:51.66384.

Terrain elevation at the horizon

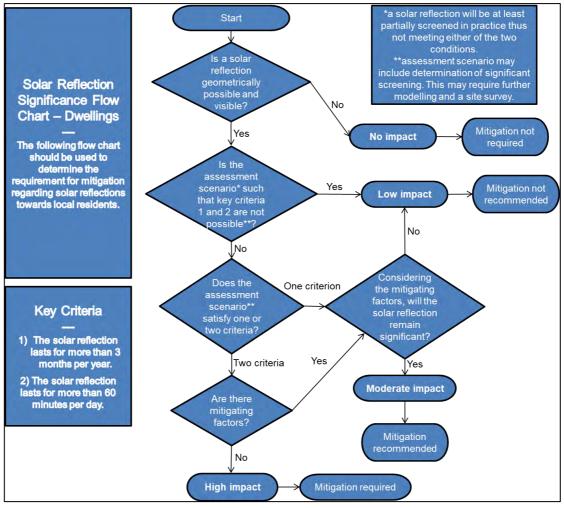
APPENDIX D - GLINT AND GLARE IMPACT SIGNIFICANCE

Overview

The significance of glint and glare will vary for different receptors. The following section presents a general overview of the significance criteria with respect to experiencing a solar reflection.

Impact Significance Definition

The table below presents the recommended definition of 'impact significance' in glint and glare terms and the requirement for mitigation under each.

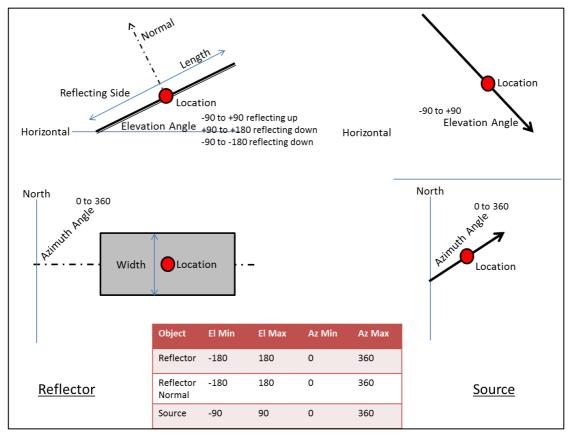

Impact Significance	Definition	Mitigation Requirement
No Impact	A solar reflection is not geometrically possible or will not be visible from the assessed receptor.	No mitigation required.
Low	A solar reflection is geometrically possible however any impact is considered to be small such that mitigation is not required e.g., intervening screening will limit the view of the reflecting solar panels significantly.	No mitigation recommended.
Moderate	A solar reflection is geometrically possible and visible however it occurs under conditions that do not represent a worst-case given individual receptor criteria.	Mitigation recommended.
High	A solar reflection is geometrically possible and visible under worst-case conditions that will produce a significant impact given individual receptor criteria	Mitigation will be required if the proposed development is to proceed.

Impact significance definition

Assessment Process for Dwelling Receptors

The flow chart presented below has been followed when determining the mitigation requirement for dwelling receptors.

Dwelling receptor mitigation requirement flow chart


APPENDIX E - REFLECTION CALCULATIONS METHODOLOGY

Pager Power's Reflection Calculations Methodology

The calculations are three dimensional and complex, accounting for:

- The Earth's orbit around the Sun;
- The Earth's rotation;
- The Earth's orientation;
- The reflector's location;
- The reflector's 3D Orientation.

Reflections from a flat reflector are calculated by considering the normal which is an imaginary line that is perpendicular to the reflective surface and originates from it. The diagram below may be used to aid understanding of the reflection calculation process.

The following process is used to determine the 3D Azimuth and Elevation of a reflection:

- Use the Latitude and Longitude of reflector as the reference for calculation purposes;
- Calculate the Azimuth and Elevation of the normal to the reflector;
- Calculate the 3D angle between the source and the normal;

- If this angle is less than 90 degrees a reflection will occur. If it is greater than 90 degrees no reflection will occur because the source is behind the reflector;
- Calculate the Azimuth and Elevation of the reflection in accordance with the following:
 - The angle between source and normal is equal to angle between normal and reflection;
 - Source, Normal and Reflection are in the same plane.

APPENDIX F - ASSESSMENT LIMITATIONS AND ASSUMPTIONS

Pager Power's Model

The model considers 100% sunlight during daylight hours which is highly conservative.

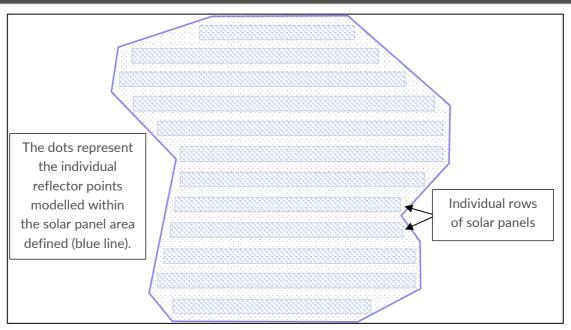
The model does not account for terrain between the reflecting solar panels and the assessed receptor where a solar reflection is geometrically possible.

The model considers terrain between the reflecting solar panels and the visible horizon (where the sun may be obstructed from view of the panels)³³.

It is assumed that the panel elevation angle assessed represents the elevation angle for all of the panels within each solar panel area defined.

It is assumed that the panel azimuth angle assessed represents the azimuth angle for all of the panels within each solar panel area defined.

Only a reflection from the face of the panel has been considered. The frame or the reverse of the frame of the solar panel has not been considered.


The model assumes that a receptor can view the face of every panel (point, defined in the following paragraph) within the development area whilst in reality this, in the majority of cases, will not occur. Therefore any predicted solar reflection from the face of a solar panel that is not visible to a receptor will not occur in practice.

A finite number of points within each solar panel area defined is chosen based on an assessment resolution so that a comprehensive understanding of the entire development can be formed. This determines whether a solar reflection could ever occur at a chosen receptor. The model does not consider the specific panel rows or the entire face of the solar panel within the development outline, rather a single point is defined every 'x' metres (based on the assessment resolution) with the geometric characteristics of the panel. A panel area is however defined to encapsulate all possible panel locations. See the figure on the following page which illustrates this process.

³³ UK only.

Solar Photovoltaic Glint and Glare Study

Solar panel area modelling overview

A single reflection point is chosen for the geometric calculations. This suitably determines whether a solar reflection can be experienced at a receptor location and the time of year and duration of the solar reflection. Increased accuracy could be achieved by increasing the number of heights assessed however this would only marginally change the results and is not considered significant.

The available street view imagery, satellite mapping, terrain and any site imagery provided by the developer has been used to assess line of sight from the assessed receptors to the modelled solar panel area, unless stated otherwise. In some cases, this imagery may not be up to date and may not give the full perspective of the installation from the location of the assessed receptor.

Any screening in the form of trees, buildings etc. that may obstruct the Sun from view of the solar panels is not within the modelling unless stated otherwise. The terrain profile at the horizon is considered if stated.

APPENDIX G - RECEPTOR AND REFLECTOR AREA DETAILS

Terrain Height

Terrain Height was calculated from Pager Power's database (established on OS Panorama 50m DTM) based on the coordinates of the point of interest.

Dwelling Receptor Data

The table below presents the coordinates for the assessed dwelling receptors.

Location	Latitude (°)	Longitude (°)	Assessed Altitude (m) (amsl)
1	51.667237	-4.90649	36.77
2	51.667688	-4.908136	30.06
3	51.667309	-4.907872	36.05
4	51.66714	-4.90787	37.64
5	51.667033	-4.907949	39.18
6	51.666961	-4.907956	40.16
7	51.666851	-4.907955	41.66
8	51.666759	-4.907939	42.85
9	51.666641	-4.907918	43.49
10	51.666543	-4.907938	44.94
11	51.666428	-4.907942	47.30
12	51.666324	-4.907938	48.58
13	51.666229	-4.907935	48.65
14	51.666119	-4.907936	49.72
15	51.666001	-4.907937	50.73
16	51.66589	-4.907953	51.52
17	51.665931	-4.908446	51.70
18	51.665826	-4.909287	52.87

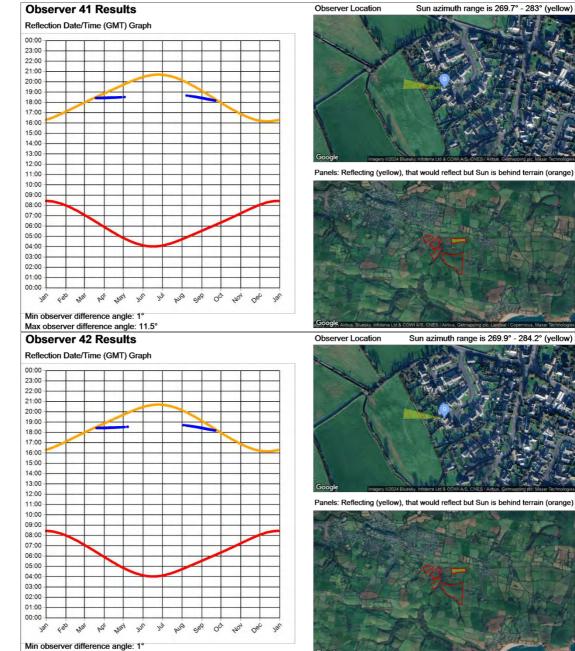
Location	Latitude (°)	Longitude (°)	Assessed Altitude (m) (amsl)
19	51.664429	-4.907931	53.66
20	51.661882	-4.90707	51.91
21	51.659762	-4.907975	62.10
22	51.659523	-4.907774	62.98
23	51.658226	-4.901149	60.11
24	51.657419	-4.901872	63.77
25	51.663604	-4.895055	41.65
26	51.656425	-4.891195	58.74
27	51.654342	-4.883664	64.87
28	51.664413	-4.886913	21.80
29	51.666938	-4.874467	27.22
30	51.667245	-4.872914	27.80
31	51.666885	-4.872558	27.80
32	51.666642	-4.872577	27.80
33	51.666391	-4.874774	26.13
34	51.666273	-4.874862	25.92
35	51.666156	-4.874754	25.75
36	51.666052	-4.874716	25.49
37	51.665985	-4.874543	25.24
38	51.665901	-4.873932	26.97
39	51.66579	-4.874121	26.90
40	51.665754	-4.874322	26.11
41	51.665661	-4.874388	25.83
42	51.665547	-4.874307	26.07

Location	Latitude (°)	Longitude (°)	Assessed Altitude (m) (amsl)
43	51.665429	-4.874166	26.80
44	51.665343	-4.873926	26.80
45	51.665578	-4.872791	28.13
46	51.665383	-4.872855	28.19
47	51.665218	-4.872901	28.19
48	51.665108	-4.873174	27.80
49	51.66504	-4.873453	27.54
50	51.664958	-4.873728	26.80
51	51.664522	-4.87375	27.61
52	51.664239	-4.87393	28.16
53	51.664116	-4.873842	28.59
54	51.66395	-4.873741	28.66
55	51.663624	-4.873594	28.32
56	51.66353	-4.872529	27.57
57	51.66336	-4.872508	26.41
58	51.663242	-4.872554	25.60
59	51.661953	-4.872834	28.10
60	51.662049	-4.873298	27.80
61	51.660811	-4.875501	34.48
62	51.659936	-4.876804	42.12
63	51.658966	-4.873246	39.64
64	51.651047	-4.871483	77.25
65	51.650652	-4.872138	78.79

Dwelling Receptor Data

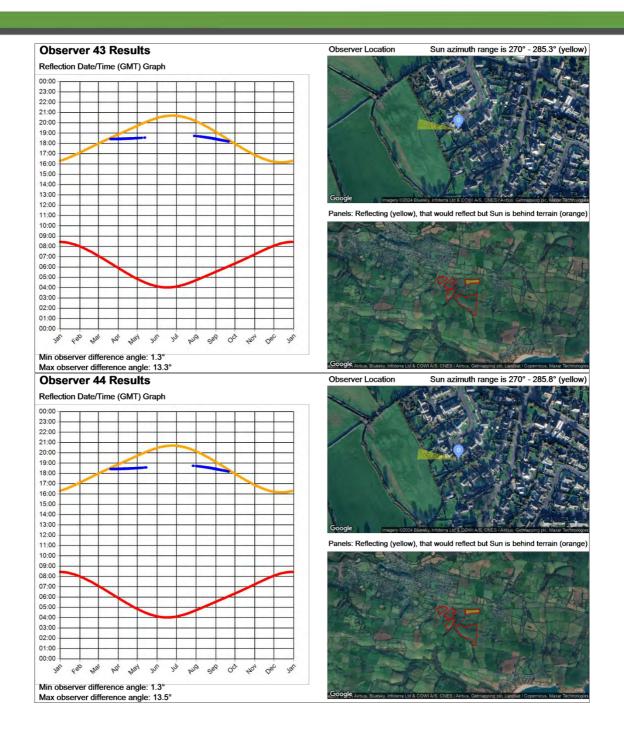
APPENDIX H – DETAILED MODELLING RESULTS

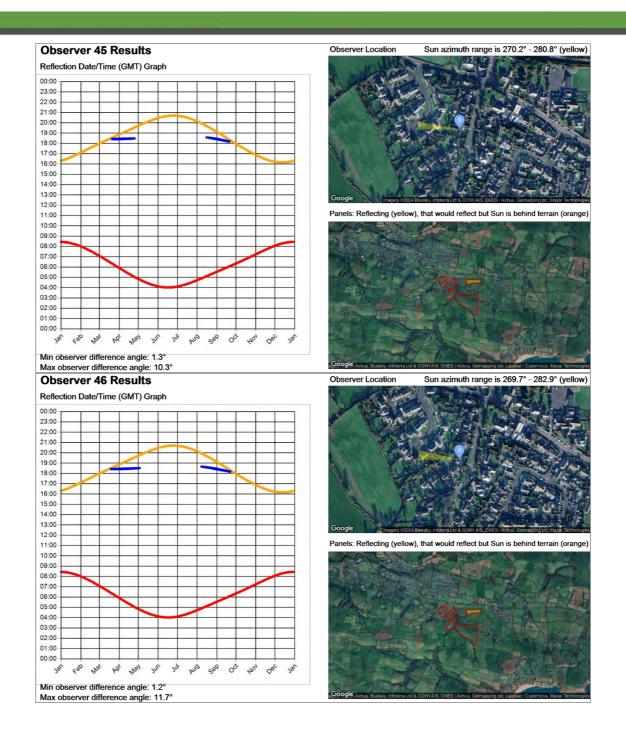
Overview

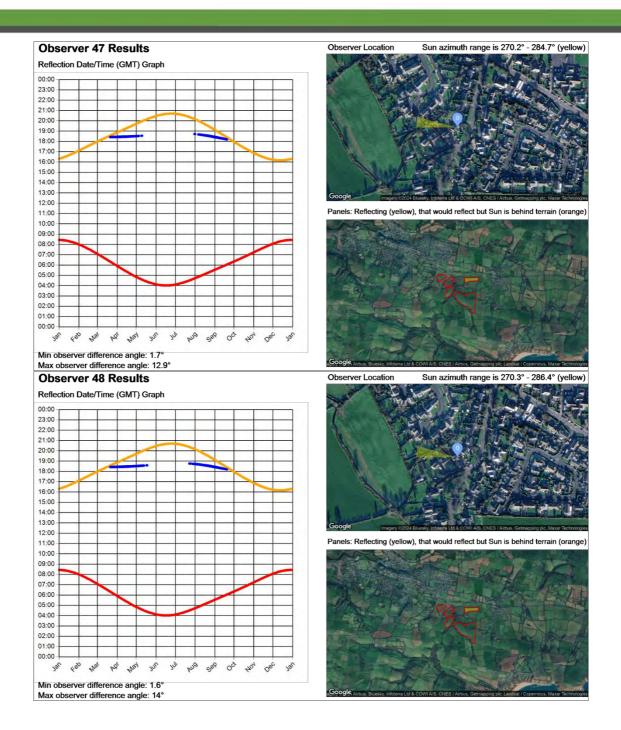

The charts for the receptors where any level of impact is predicted are shown on the following pages.

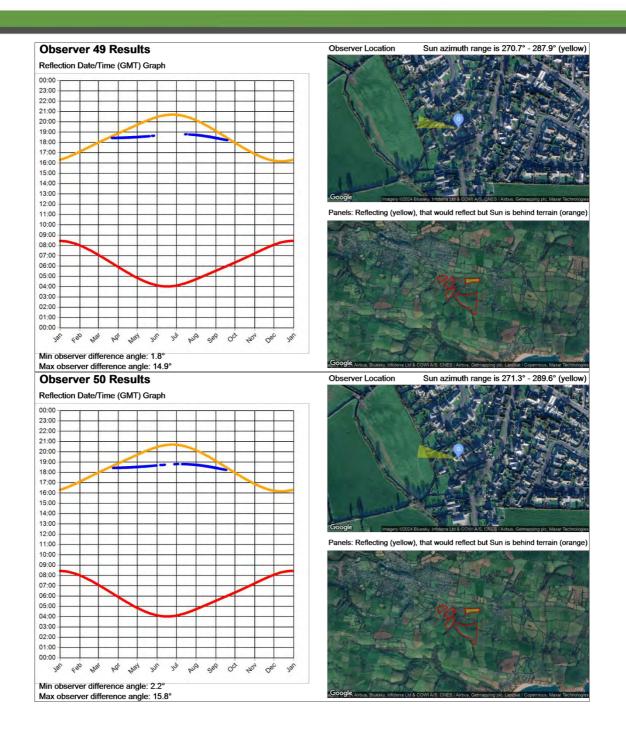
Each chart shows:

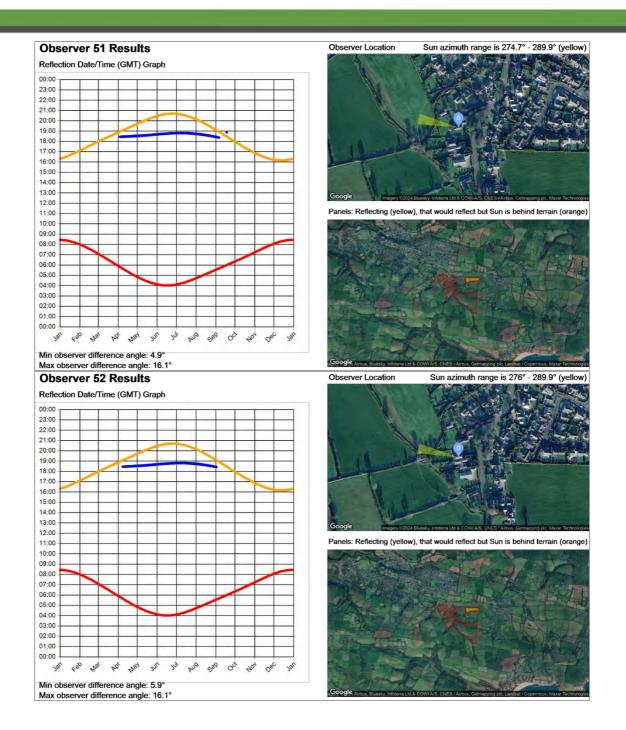
- The receptor (observer) location top right image. This also shows the azimuth range of the Sun itself at times when reflections are possible. If sunlight is experienced from the same direction as the reflecting panels, the overall impact of the reflection is reduced as discussed within the body of the report;
- The reflecting areas bottom right image. The reflecting area is shown in yellow. If the yellow panels are not visible from the observer location, no issues will occur in practice. Additional obstructions which may obscure the reflector area from view are considered separately within the analysis;
- The reflection date/time graph left hand side of the page. The blue line indicates the dates and times at which geometric reflections are possible. This relates to reflections from the yellow areas only.

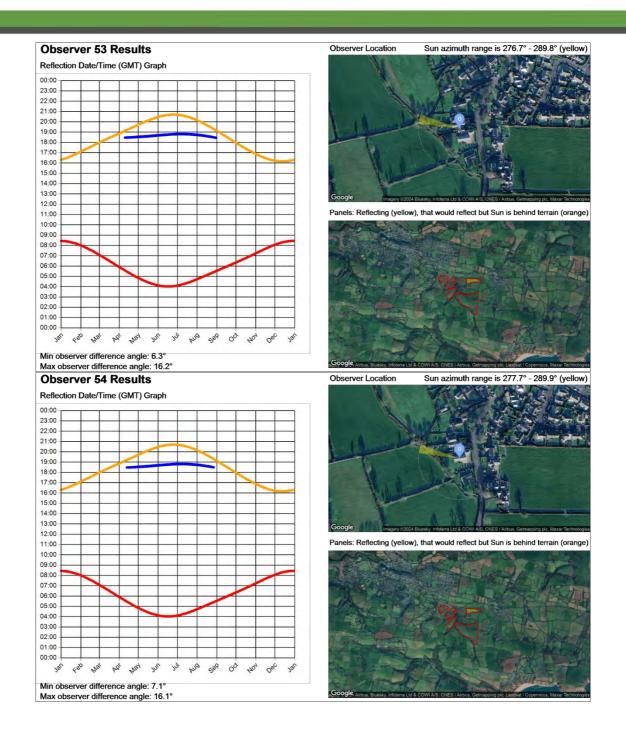


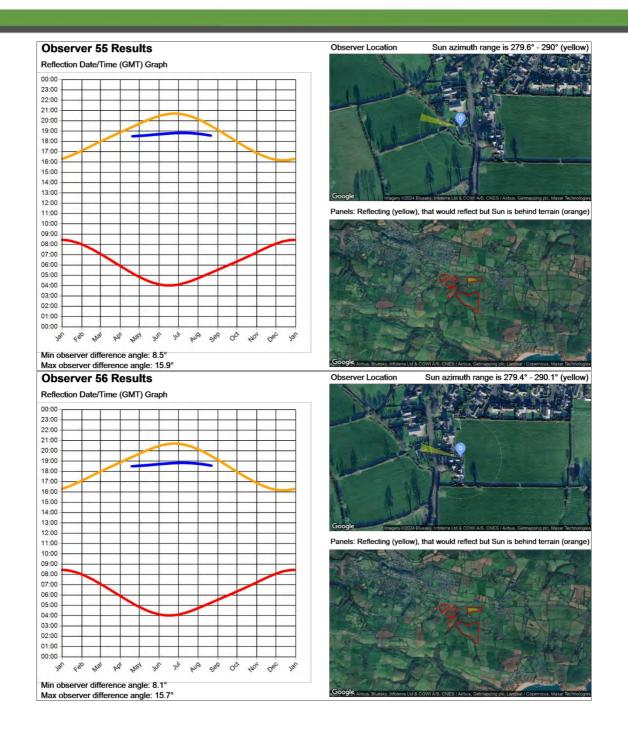

Dwelling Receptors

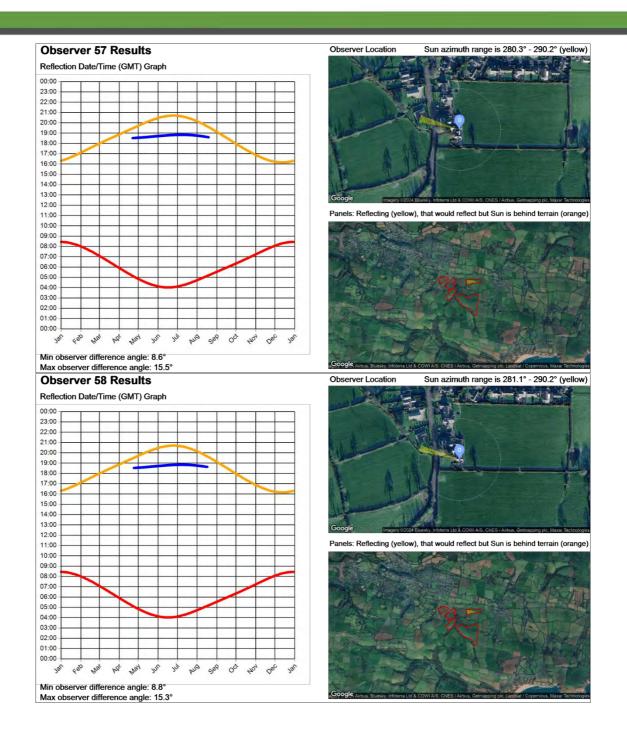

Max observer difference angle: 12.4°


Alleston Solar Farm 81









Urban & Renewables

Pager Power Limited Stour Valley Business Centre Sudbury Suffolk CO10 7GB

Tel: +44 1787 319001 Email: info@pagerpower.com Web: www.pagerpower.com