ACKRON WIND FARM # PEAT SLIDE RISK ASSESSMENT NOVEMBER 2020 # Prepared By: # Arcus Consultancy Services 7th Floor 144 West George Street Glasgow G2 2HG T +44 (0)141 847 0340 I E info@arcusconsulting.co.uk w www.arcusconsulting.co.uk Registered in England & Wales No. 5644976 # TABLE OF CONTENTS | 1 | INTRO | INTRODUCTION | | | |------|--------|----------------------------------|---|--| | | 1.1 | Background | 3 | | | | 1.2 | Scope and Purpose | 3 | | | 2 | SITEI | NFORMATION | 4 | | | | 2.1 | Site Description and Topography | 4 | | | | 2.2 | Published Geology | 4 | | | | 2.2.1 | Superficial Soils | 4 | | | | 2.2.2 | Solid Geology | 4 | | | | 2.2.3 | Geomorphology | 4 | | | | 2.2.4 | Hydrology and Hydrogeology | 5 | | | | 2.3 | Sources of Information | 5 | | | 3 | GUI D | ANCE AND METHODOLOGY | 6 | | | | 3.1 | General Guidance on Peat Failure | 6 | | | | 3.2 | Assessment Approach | 6 | | | | 3.3 | Peat Probing Methodology | 7 | | | | 3.3.1 | Development of Hazard Rank | 7 | | | 4 | SITES | SURVEYS | 8 | | | | 4.1 | Introduction | 8 | | | | 4.2 | Peat Depth | 8 | | | | 4.3 | Substrate1 | 1 | | | HAZA | RD ANI | D EXPOSURE ASSESSMENT1 | 2 | | | | 4.4 | Background1 | 2 | | | | 4.5 | Methodology1 | 2 | | | | 4.6 | Hazard Assessment1 | 2 | | | | 4.7 | Hazard Rating1 | 2 | | | | 4.8 | Peat Stability Assessment | 3 | | | | 4.9 | Exposure Assessment | 4 | | | | 4.10 | Exposure Rating1 | 4 | | | | 4.11 | Rating Normalisation1 | 5 | | | 5 | HAZAI | RD RANKING1 | 7 | | | 6 | SLIDE | RISK AND MITIGATION1 | 8 | | | | 6.1 | General1 | 8 | | | | 6.2 | Embedded Mitigation | 24 | |-------|----------------------|---------------------------------------|----| | | 6.3 | Peat Slide Mitigation Recommendations | 24 | | 7 | PSRA | CONCLUSIONS | 25 | | APPEN | APPENDIX A - FIGURES | | | APPENDIX B - HAZARD RANK ASSESSMENT RECORDS #### 1 INTRODUCTION ## 1.1 Background Arcus Consultancy Services were commissioned by Statkraft to carry out a Peat Slide Risk Assessment (PSRA) for the proposed Ackron Wind Farm (The Development). The Development will consist of the following key infrastructure: - Up to 12 three-bladed turbines with a maximum tip height of 149.9 m; - Associated foundations, blade laydown areas and crane hardstandings at each wind turbine location; - Access tracks linking the turbine locations; - Substation compound incorporating electrical switchgear and wind farm control elements; - Temporary construction compound; - Underground cabling running adjacent to the access tracks where possible; - A permanent anemometry mast (up to 92 m); and - New site access off the A897. The proposed Site layout is shown on Figure 13.1.1 appended with this report in Appendix A. #### 1.2 Scope and Purpose This PSRA provides factual information on the peat survey results relating to the proposed turbine locations. The desk-based information and Site surveys have been utilised to assess the potential risk of any peat landslide. The methodology adopted and details on the assessment are outlined in Sections 3, 4 and 5. The assessment has been undertaken in accordance with Scottish Government Guidance in assessing the likelihood and consequence of such an event. #### 2 SITE INFORMATION # 2.1 Site Description and Topography 2.1.1 The Site is located approximately 18 kilometres (km) west of Thurso and 2 km southeast of Melvich in Sutherland, Highland Council. The Site extents and location are shown on Figure 13.1.1. The Site ranges from approximately 186 m Above Ordnance Datum (AOD) in the east of the Site at Beinn Ruadh, generally sloping westward to 30 m AOD along the A897. The Site predominately comprises of open moorland used for rough grazing; there is a small area of improved pasture in the north west and pockets of commercial forestry. ## 2.2 Published Geology ## 2.2.1 Superficial Soils Published British Geological Survey (BGS) mapping¹ of superficial soils indicates the majority of the site to be underlain by superficial soils, predominantly Hummocky (Moundy) Glacial Deposits (HGMD) composed of rock debris, clayey till and poorly to well-stratified sand and gravel. Smaller areas of Peat are also found in the more topographically flat areas of site. Figure 13.1.2 illustrates the published Superficial Soils. # 2.2.2 Solid Geology Published bedrock geology mapping indicates the site to be underlain almost entirely by Portskerra Psammite Formation. No faulting exists on site. Figure 13.1.3 illustrates the published Solid Geology # 2.2.3 Geomorphology Geomorphological mapping can act as a primary instrument in highlighting geological risk factors when considering peat slides. The Scottish Government Guidance provides 5 basic features in which a geomorphological map should convey: - The position of major slope breaks (e.g. convexities and concavities); - The position and alignment of major natural drainage features (e.g. peat gullies and streams); - The location and extent of erosion complexes (e.g. haggs and groughs, large areas of bare peat); - Outlines of past peat landslides (including source areas and deposits), if visible; and - The location, extent and orientation of cracks, fissures, ridges and other prefailure indicators. Figure 13.1.4 'Geomorphological Map' has been prepared to inform a baseline information of the Site with consideration given to existing site conditions through site visit and aerial photography, slope angle and geomorphological data. The Sites hydrology is dominated by the River 'Allt Domhain' in the west and the Lake 'Loch Fir Raoilt' in the east. Various tributaries and run-off's run in between these two bodies of water and beyond the Loch in the north. Across the Site as a whole, there is little evidence of past peat failure. There is evidence of widespread peat hagging within the far western site area along with localised historical peat workings in the central site area, close to T2, and in the far north of the site. The developable Site area has extremely varied and extensive slopes. The majority of the developable Sire area (central and southern Site area) is dominated by $4^{\circ} - 8^{\circ}$ slopes with - ¹ British Geological Survey (BGS) 2019: http://mapapps2.bgs.ac.uk/geoindex/home.html crests of 8° – 30° throughout. Infrastructure on or in proximity to these slopes has been carefully designed with respect to peat and topography. # 2.2.4 Hydrology and Hydrogeology The Akran Burn issues from Caol Loch which is located to the south west of site and Akran Loch located 1.4 km south of the Site. The Akran Burn flows through the south western section of the Site before flowing into the Halladale River 0.5 km west of the Site. The Giligill Burn rises in the south east of the Site before flowing northwest and converging with the unnamed watercourse at the Site's western boundary before flowing into the Halladale River 1.4 km west of the Site. An unnamed watercourse rises within the centre of the Site before flowing north west and flowing into the Giliqill Burn. The Halladale River has a SEPA overall status of "Moderate". The Halladale River flows into the North Sea, approximately 1.7 km north west of the Site. The SEPA Aquifer classification Map of Scotland² Site confirms the groundwater units underlying the Core **Study Area are identified by Scotland's Environment mapping service** as the Northern Highland groundwater body which has an overall SEPA classification of **'Good'.** BGS 1:50,000 digital mapping and the BGS GeoIndex shows the bedrock aquifer underlying the majority of the Core Study Area to consist of psammites (metamorphosed sedimentary rocks) of the Portskerra Formation of the Moine Supergroup. These rocks are classified by the BGS as a 'low productivity aquifer' with small amounts of groundwater in the near-surface weathered zone and secondary fractures. #### 2.3 Sources of Information The following sources of information were used as part of the desk study investigations: - British Geological Survey Online GeoIndex; - Ordnance Survey (OS) topographical information; - Aerial and Satellite photography via Ordnance Survey and Google Earth. - Soil Survey of Scotland 'MacAulay Institute for Soil Research' 1984; - Soil Survey of Scotland 'Scottish Peat Surveys' 1964; - Scottish Government (SG) 'Peat Landslide Hazard and Risk Assessments' December 2017: - Scottish Government, Scottish Natural Heritage, SEPA (2017) Peatland Survey, Guidance on Developments on Peatland; - The Scottish Government Scotland's Third National Planning Framework, 2014; - The Scottish Government Scottish Planning Policy, 2014; - Assessments by other EIA specialists (specifically hydrology and ecology for data on sensitive receptors); - Scotland's Environment Interactive Map . ² SEPA Aquifer Classification Map of Scotland (2019): https://map.environment.gov.scot/sewebmap/ (Accessed 04/11/2019) #### 3 GUIDANCE AND METHODOLOGY #### 3.1 General Guidance on Peat Failure The SG guidance divides peat instability into two categories³, 'peat slides' and 'bog bursts'. The guidance states that peat slides have a greater risk of occurrence in areas where: - Peat is encountered at or near to ground surface level; - The thicknesses are recorded in the region of 2.0 m (above which, in general terms, peat instability would increase with peat thickness); and - The slope gradients are steep (between 5° and 15°). Bog bursts are considered to have a greater risk of occurrence in areas where: - Peat depth is greater than 1.5 m; and - Slope gradients are shallow (between 2° and 10°). It should be noted however that peat instability events, although uncommon, can occur out with these limits and reports of bog bursts are generally restricted to the Republic and Northern Ireland. Preparatory factors which effect the stability of peat slopes in the short to medium-term include: - Loss of surface vegetation (deforestation); -
Changes in sub-surface hydrology; - Increase in the mass of peat through accumulation, increase in water content and growth of tree planting; or - Reduction in shear strength of peat or substrate due to chemical or physical weathering, progressive creep and tension cracking. Triggering factors which can have immediate effect on peat stability and act on susceptible slopes include: - Intensive rainfall or snow melt causing pressures along existing or potential peat/substrate interfaces; - Snow melt: - Alterations to drainage patterns, both surface and sub-surface; - Peat extraction at the toe of the slope reducing the support of the upslope material; - Peat loading (commonly due to stockpiling) causing an increase in shear stress; and - Earthquakes or rapid ground accelerations such as blasting or mechanical movement. Consideration of peat stability should form an integral part of the design of a windfarm development. While peat does not wholly provide a development constraint, areas of deep peat or peat deposits on steep slope should be either avoided through design and micrositing or mitigation measures should be designed to avoid potential instability and movement. # 3.2 Assessment Approach This PSRA has been carried out in accordance Scottish Government (SG) guidance of 2017 titled 'Peat Landslide Hazard and Risk Assessments - Best Practice Guide for Proposed Electricity Generation Developments', Scottish Government. ³ Peat Landslide Hazard and Risk Assessments: Best Practice Guide for Proposed Electricity Generation Developments (2017): file://arcus01/Technical%20Information/Engineering/Geotechnical%20and%20Environmental%20Reference%20Documents/Peat/ScotGov-PeatLandslideHazardandRisk-2017.pdf (Accessed 13/01/2020) In June 2014, the new 'Scottish Planning Policy' (SPP)⁴ and 'National Planning Framework (NPF3)⁵ were published. In relation to peat and the assessment of effects on resource, NPF3 references Scottish Natural Heritage 'Scotland's National Peatland Plan'. These policy, framework and guidance documents are therefore also considered in this PSRA. The PSRA undertaken is based on: - Desk based assessment; - Site visits: - Historic peat probing data; - Further peat probing including infrastructure specific probing; and - A hazard and risk ranking assessment. The area of the Development subject to assessment was determined by the emerging Development layout which considered initial findings from desk studies and anticipated peat deposits as well as other physical and environmental constraints. # 3.3 Peat Probing Methodology Initial peat probing (phase one) was undertaken by Arcus as part of the preliminary EIA works which combined preliminary probing and detailed peat probing within the boundaries of a Site layout iteration. The probing covered an initial design iteration at 100 m centres within the proposed Site boundary where forestation allowed. Following on from this, infrastructure was probed at a more detailed methodology (phase two). Proposed access tracks were probed at 50 m intervals and at 25 m either side to create a corridor. Localised 10 m centres at turbines out to 50 m radius were also sunk in accordance with SG guidance. Following design iteration revisions, further peat probing was required in order to cover areas not previously probed following the same methodology as the Phase 2 probing. # 3.3.1 Development of Hazard Rank The early stages of the PSRA includes a desk study of existing data and considers whether Site visits and peat probing were carried out in parallel with the assessment of wider constraints and the Development of the windfarm layout. Following identification of peat depths within the Site, the assessment was carried out to determine the potential effects on the peat resource from construction activities which would include: - Construction of tracks; - Excavation of turbine bases; - Foundation construction; - Construction of hardstanding; and - Temporary Storage of Peat An assessment of the peat probing data and a review of any available Site information would be undertaken and a hazard rank calculated zonally across the Site reflecting risk of peat instability/constraint to construction. Where practical, the Development layout would be designed to avoid areas of a risk score above 'low'. Where this has not been achieved, areas effected have been discussed in both the EIA as having significant effect, with relative mitigation measures proposed to reduce this, and recorded on a risk register which sets out specific mitigation measures which are considered necessary to reduce the risk of inducing instability. ⁴ Scottish Government Scottish Planning Policy (2014): https://www.gov.scot/publications/scottish-planning-policy/ (Accessed 13/11/2019) ⁵ Scottish Government National Planning Framework 3: https://www2.gov.scot/About/Performance/scotPerforms (Accessed 13/11/2019) #### 4 SITE SURVEYS #### 4.1 Introduction The existing peat depths across the Site have been determined through a phased survey approach. The survey was initiated to inform the EIA and Site design work while supporting the PSRA. Initial peat depth surveys were undertaken in March 2019 comprising 100 m grid coverage across the Site, where accessible. This methodology was applied to the additional Phase 1 survey following a boundary extension South into Golval land which was carried out in October 2019. This rationale of probing is in accordance with the phase one approach as detailed in the Scottish Government guidance for investigating peat. Further peat depth surveys (phase two) were undertaken across several visits between December 2019 and July 2020. The probe positions for this visit were focussed on the proposed turbine, access tracks and other key infrastructure. Peat depths were measured along the proposed access tracks at 50 m centres with offsets of 25 m on either side of the centre line, an intense 10 m grid across the proposed turbine locations. # 4.2 Peat Depth Throughout the peat surveys to date, a total of 2656 probes were sunk. 51% of these recorded no peat or peat less than 0.5 m, while 26% recorded peat between 0.5 m and 1.0 m. Thick peat (where the depth was greater than >1.0 m) was recorded at 23% of locations. Peat depths ranged from 0 m to 5.3 m thickness across the study area and were shown as localised or isolated zones within the central area of the Site. Figure 13.1.6 **'Interpolated Peat Depths' included in Appendix 1 illustrates the peat depths** across the site area. The distribution of peat deposits along the proposed tracks and infrastructure are shown on Figure 13.1.5 **'Recorded Peat Depths' is included in Appendix** A. Peat depths at turbines and the wider site area are included in Table 1 and 2 respectively while the general Site survey conditions are illustrated in photographs 1 to 6. Additional photographs are included in Appendix 2 Photograph 1 - Taken in the eastern Site area in close proximity to T5, facing north west. Photograph 2 – Taken in the central Site area in close proximity to T4, facing north west. Photograph 3 - Taken in the northern Site area in close proximity to T11, facing north west Photograph 4 – Taken in the southern Site area in close proximity to T6, facing north west Photograph 5 - Taken in the western Site area in close proximity to T2, facing north west The peat slide risk assessment was undertaken on the finalised Site layout provided by the design team. Table 1 indicates the average peat depths encountered at each proposed turbine location in the surrounding 100 m while Table 2 summarises the peat depths recorded across the Site. Table 1 - Peat Depths at Turbines and Associated Hardstand | Proposed Turbine No. | Average Peat Depths at 50 m Radius (m) | |----------------------|--| | T1 | 0.44 | | T2 | 0.99 | | T3 | 0.43 | | T4 | 0.49 | | T5 | 0.61 | | T6 | 0.42 | | T7 | 0.62 | | T8 | 0.94 | | Т9 | 0.45 | | T10 | 0.71 | | T11 | 0.4 | | T12 | 0.52 | Table 2 - Peat Depth Summary | Peat Depth Range (m) | No of peat probes | Percentage of Total (%) | |----------------------|-------------------|-------------------------| | 0.00 - 0.50 | 1350 | 50.80 | | 0.51 - 1.00 | 699 | 26.18 | | 1.01 - 1.50 | 298 | 11.16 | | 1.51 - 2.00 | 146 | 5.47 | | 2.01 - 2.50 | 93 | 3.48 | | 2.51 - 3.00 | 33 | 1.24 | | 3.01 - 3.50 | 18 | <1.0 | | 3.51 - 4.00 | 7 | <1.0 | | 4.01 - 4.50 | 6 | <1.0 | | 4.51 - 5.00 | 4 | <1.0 | | 5.01 - 5.50 | 2 | <1.0 | #### 4.3 Substrate To assist with the peat slide risk assessment, an estimation of the underlying substrate was obtained during the visit, comprising a resistance-based approach at base of probe. - Gradual refusal Clay; - Crunching/Gritty Weathered Rock/Sand and Gravel; or - Abrupt Refusal/Hard Rock The substrate parameters are included in the Hazard and Exposure Assessment in Section 5 of this report. #### HAZARD AND EXPOSURE ASSESSMENT # 4.4 Background A 'Hazard Ranking' system has been applied across the Site based on the analysis of risk of peat landslide as outlined in the Scottish Government guidance. This is applied on the principle: # Hazard Ranking = Hazard x Exposure Where 'Hazard' represents the likelihood of any peat slide event occurring and 'Exposure' being the impact or consequences that a peat slide may have on sensitive receptors that exist on and around the study area. # 4.5 Methodology The determination of Hazard and Exposure values is based on a number of variables which impact the likelihood of a peat slide (the Hazard), and the relative importance of these variables specific to the Site. Similarly, the consequences or Exposure to receptors is dependent on variables including the particular scale of a peat slide, the distance it will travel and the sensitivity of the receptor. In the absence of a predefined system, the approach
to determining and categorising Hazard and Exposure is determined on a Site by Site basis. The particular system adopted for the Development PSRA assessment is outlined in the following sub sections. #### 4.6 Hazard Assessment The potential for a peat slide to occur during the construction of a windfarm depends on several factors, the importance of which can vary from Site to Site. The factors requiring considerations would typically include: - Peat depth; - Slope gradient; - Substrate material; - Evidence of instability or potential instability; - Vegetation cover; and - Hydrology. Of these, peat depth and slope gradient are considered to be principal factors. Without a sufficient peat depth and a prevailing slope, peat slide hazard would be negligible. For the Development, the substrate material is also considered a relevant factor in relation to slide. #### 4.7 Hazard Rating When several factors may impact on the Hazard potential, a relative ranking process is applied attributing different weighting to each factor as shown below. Table 3: Coefficients for Slope Gradients | Slope Angle (degrees) | Slope Angle Coefficients | |-----------------------|--------------------------| | Slope < 2° | 1 | | 2° < Slope < 4° | 2 | | 4° < Slope < 8° | 4 | | 8° < Slope < 15° | 6 | | Slope >15° | 8 | Table 4: Coefficients for Peat Thickness and Ground Conditions | Peat Thickness | Ground Conditions Coefficients | |-------------------------------|--------------------------------| | Peaty or organic soil (<0.5m) | 1 | | Thin Peat (0.5 - 1.0m) | 2 | | Deep Peat (>1.0m) | 3* | | Deep Peat (>3.0) | 8 | ^{* -} Note that thicker peat generally occurs in areas of shallow gradient and records indicate that thick peat does not generally occur on the steeper gradients. Table 5: Coefficients for Substrate | Substrate Material | Substrate Coefficients | |------------------------------------|------------------------| | Sand/gravel | 1 | | Rock | 1.5 | | Clay | 2 | | Not proven | 2 | | Slip material (Existing materials) | 5 | The Hazard Rating Coefficient for a particular location is calculated using the following equation: Hazard Rating Coefficient = Slope Gradient x Peat Thickness x Substrate From the Hazard Rating Coefficient, the risk to stability can be ranked as set out in Table 6. Table 6: Hazard Rating | Hazard Rating Co-efficient | Potential Stability Risk (Pre-Mitigation) | |----------------------------|---| | <5 | Negligible | | 5 to 15 | Low | | 16 to 30 | Medium | | 31 to 50 | High | | > 50 | Very High | # 4.8 Peat Stability Assessment The likelihood of a particular slope or hillside failing can be expressed as a Factor of Safety. For any potential failure surface, there is a balance between the weight of the potential landslide (driving force or shear force) and the inherent strength of the soil or rock within the hillside (shear resistance). The stability of a slope can be assessed by calculating the factor of safety F, which is the ratio of the sum of resisting forces (shear strength) and the sum of the destabilising forces (shear stress): $$F = \frac{c' + (\gamma - m\gamma_w)z\cos^2\beta\tan\phi'}{\gamma z\sin\beta\cos\beta}$$ where ${\bf c'}$ is the effective cohesion, ${\bf \gamma}$ is the bulk unit weight of saturated peat, ${\bf \gamma}{\bf w}$ is the unit weight of water, ${\bf m}$ is the height of the water table as a fraction of the peat depth, ${\bf z}$ is the peat depth in the direction of normal stress, ${\bf \theta}$ is the angle of the slope to the horizontal and ${\bf \varphi}$ ' is the effective angle of internal friction. Values of F < 1 indicate a slope would have undergone failure under the conditions modelled; values of F > 1 suggest conditions of stability. Assumed geotechnical parameters have been sought from various literature values and for the purposes of the assessment in this report have the following average values have been utilised in the formula to inform the stability assessment; ${\bf C'}$ - effective cohesion (kPa), typically ranging from 2.5 to 8.5 therefore 5.0 has been adopted for the purposes of the assessment. ϕ — effective angle of friction (°), typically ranging from 21.6 to 43.5 therefore 29.6 has been adopted for the purposes of the assessment. Υ – unit weight (kN/m2), typically ranging from 9.61 to 10, therefore 10 has been adopted for the purposes of the assessment. In accordance with the best practice method, F values of <1.0 indicate slopes that would experience failure under the modelled conditions and as such are considered areas of high risk. However, Boylan et al (2008) indicate that a relatively high value of F=1.4 should be used to identify slopes with the potential for instability. Adopting a similar and more onerous approach, high risk areas are indicated where F is <1.0, medium risk areas are indicated between 1.01 to 1.50, low risk between 1.51 and 2.00 and very low/negligible values > 2.0. Using digital terrain modelling and GPS co-ordinates of each peat probe, a factor of Safety, F has been calculated for each probe location which has been created through ArcGIS Spatial Analyst tools. The 'Factor of Safety Plan' is shown on Figure 13.1.8. # 4.9 Exposure Assessment The main Exposure receptors identified within the Site and surrounding area which could potentially be affected in the event of a peat slide were existing windfarm infrastructure, watercourses and associated tributaries. The impact of a peat slide on receptors can be assessed on a relative scale based on the potential for loss of habitat, a historical feature or disruption/danger to the public. To effectively assess the impact, the assessment of Exposure effect must also consider the distance between the hazard and the receptor, and the relative elevation between the two. #### 4.10 Exposure Rating Similar to the Hazard Rating, the Exposure Ratings were determined using relative ranking process by attributing the different weighting systems to each factor as shown below: Table 6: Coefficients for Receptor Type | Receptor | Receptor Coefficients | |---|-----------------------| | Tracks/footpaths | 2 | | Non-critical infrastructure, minor/private roads | 3 | | Minor watercourses and tributaries, critical infrastructure (pipelines, motorways, dwellings, business properties). | 6 | | Residential Properties/Community,
Watercourses/Lochs, important habitat | 8 | Table 7: Coefficients for Distance from Receptor | Distance from Receptor | Distance Coefficients | |------------------------|-----------------------| | > 1 km | 1 | | 100 m to 1 km | 2 | | 10 m to 100 m | 3 | | <10 m | 4 | Table 8: Coefficients for Receptor Elevation | Receptor Elevation | Elevation Coefficients | |--------------------|------------------------| | < 10 m | 1 | | 10 m to 50 m | 2 | | 50 m to 100 m | 3 | | > 100 m | 4 | The Exposure Rating Coefficient for a particular location is calculated using the following equation: # Exposure Rating Coefficient = Receptor x Distance x Elevation From the Hazard Rating Coefficient, the risk to stability can be ranked as set out in Table 9. Table 9: Exposure Rating | Exposure Rating Co-efficient | Potential Stability Risk (Pre-Mitigation) | |------------------------------|---| | <6 | Very Low | | 7 to12 | Low | | 13 to 24 | High | | 25 to 30 | Very High | | >30 | Extremely High | # 4.11 Rating Normalisation In order to achieve an overall Hazard Ranking in accordance with the Scottish Government Guidance, the Hazard and Exposure Rating Coefficient derived from the coefficient tables are normalised as shown in Table 10. Table 10: Rating Normalisation | Hazard Rating | | Exposure Rating | | | |-----------------|------------------|--------------------|------------------|--| | Current Scale | Normalised Scale | Current Scale | Normalised Scale | | | < 6 Negligible | 1 | <5 Very Low | 1 | | | 7 to 12 Low | 2 | 5 to 15 Low | 2 | | | 13 to 24 Medium | 3 | 16 to 30 High | 3 | | | 25 to 30 High | 4 | 31 to 50 Very High | 4 | | | >30 Very high | 5 | >50 Extremely High | 5 | | The record of the Hazard Rank Assessment is included in Appendix B of this report. # 5 HAZARD RANKING Having identified the rating coefficients as defined in Section 5 of this report, it is possible to categorise areas of the Site with a Hazard Ranking by multiplying the Hazard and Exposure Rating. Hazard Ranking and associated suggested actions matrix are shown in Tables 11 and 12 below: Table 11 - Hazard Ranking and Suggested Actions | Hazard Ranking | | Action Suggested in the Scottish Executive Guidance | | |----------------|------------|---|--| | 17-25 | High | Avoid project development at these locations. | | | 11-16 | Medium | Project should not proceed unless hazard can be avoided or mitigated at these locations, without significant environmental impact, in order to reduce hazard ranking to low or less | | | 5-10 | Low | Project may proceed pending further investigation to refine assessment. Mitigation of hazards maybe required through micrositing or re-design at these locations. | | | 1-4 | Negligible | Project should proceed with monitoring and mitigation of peat landslide hazards at these locations as appropriate. | | Table 12- Hazard Ranking Matrix | | 5 | Low | Low | Medium | High | High | |-----------|---|-----------------|------------|------------|------------|--------| | | 4 | Negligible | Low | Medium | Medium | High | | Rating | 3 | Negligible | Low | Low | Medium | Medium | | Hazard Ra | 2 | Negligible | Negligible | Low | Low | Low | | | 1 | Negligible | Negligible | Negligible | Negligible | Low | | | | 1 | 2 | 3 | 4 | 5 | | | | Exposure
Rating | | | | | Receptor exposure was assessed for each of the seventeen hazard zones using the approach in Section 5. A summary of the Hazard Ranking result for each identified area is summarised in Table 13 and is presented in Figure 13.1.9 'Hazard Ranking Zonation Plan'. #### 6 SLIDE RISK AND MITIGATION #### 6.1 General This PSRA has shown the Site to be generally of negligible or low hazard ranking. There were isolated areas recorded as medium risk which were not within areas proposed for infrastructure. However, these point locations lay within a generally wider zoned area of low risk. Where the hazard ranking has been lowered through mitigation measures, the original ranking will remain in the overall hazard zoning plan and It should be acknowledged that the hazard zonation plan is based on the pre-mitigation status While the specific recommended mitigation in low ranked areas are proposed other mitigation is embedded in the design at EIA stage, it is also necessary for detailed design and construction of the Development infrastructure to be undertaken in a competent and controlled manner. The embedded mitigation and good practice measures are set out in Section 7.2. It should be noted that the mitigation measures defined are not exclusive and other forms of mitigation may well be required and should be developed by designers and implemented during construction of the scheme. Table 13 - Hazard Rank | Hazard A | Area and
ucture | Unmitigated H | lazard | Mitigated Hazard | | |----------------|---|---------------|---|--|------------| | Hazard
Area | Infrastructure
Affected | Ranking | Key Aspects | Specific
Actions | Ranking | | H1 | Existing Track,
Proposed Track,
Construction
Compound,
Substation, T9 | Negligible | Location and topography: South east of Ackron Farm Generally flat with some gentle slopes. Geomorphology: Ackran Burn runs west to south east with Alluvium deposits on either side. Established plantation forestry to the eastern edge of Zone. Peat Depth: (min) 0.0m - (max) 3.0m. Average 0.36m Slope Gradient: 0° to 30° Exposure: Proposed infrastructure, minor watercourses, important habitat, residential properties | Micro-siting in to areas of thinner peat where required. | Negligible | | H2 | No
infrastructure | Negligible | Location and topography: South east of Golval Farm – Generally flat. Geomorphology: unnamed watercourse running south east until dissipating in hagged peatland in the centre of the Zone. Peat Depth: (min) 0.0m - (max) 5.00m. Average: 0.83m Slope Gradient: 0° to 15° Exposure: minor watercourses | | Negligible | |----|----------------------------|------------|---|-------------------------------|------------| | H3 | No infrastructure Proposed | Low | Location and topography: Extends from the northern section of Golval Hill and covers a large area southward, encompassing the entire southern Site boundary – multiple strong slopes and natural basins. Geomorphology: Ackran Burn dissipates into multiple unnamed watercourses, extending to the south east of the Site boundary, with Alluvium deposits on either side consistently. Extensive evidence of artificial drainage. Steep slope of Golval Hill's eastern edge running down the eastern side of the zone, slope dissipating further west. Peat Depth: (min) 0.1m - (max) 5.30m. Average: 0.76m Slope Gradient: 0° to 30+° | No infrastructure
Proposed | Negligible | | | | | Exposure: , minor watercourses | | | |----|---|------------|---|--|------------| | H4 | T4, T6 and T7, borrow pits | Low | Location and topography: Extends along the central area of Site Infrastructure — Sloping down towards the Ackran burn on the western edge of the Zone. Geomorphology: Ackran Burn runs along the western Zone area with associated Alluvium deposits. The Giligill Burn extends from the northern boundary and dissipates towards the central Site area. Evidence of historic artificial drainage. Established plantation forestry to the western Zone boundary. Peat Depth: (min) 0.1m (max) 5.0m. Average: 0.87mSlope Gradient: 0° to 30° +Exposure: Proposed turbine and associated infrastructure, minor watercourses | Micro-siting in to areas of thinner peat is recommended, where required. In areas where peat depths exceed 1m, it is recommended that floating track construction methods should be adopted. Adoption of best practice methods to manage drainage in borrow pit workings and other excavations works. | Negligible | | H5 | Proposed track,
Meteorological
Mast | Negligible | Location and topography: Northern side of Ackran Burn, immediately west of T4 – extremely flat Geomorphology: Alluvial Deposits to the south west from Ackran Burn. Possible peat workings on the north western edge of the Zone. Artificial Drainage running from the potential area of peat workings eastward. Peat Depth: (min) 0.2m - (max) 0.9m. Average: 0.52m Slope Gradient: 0° to 5° | Micro-siting in to areas of thinner peat is recommended, if required. Adoption of best practice methods to manage drainage in excavations works. | Negligible | | H6 | Proposed track,
T3 & T5 | Negligible | Exposure: Proposed Meteorological Mast and associated infrastructure, proposed track Location and topography: immediately west of Cnoc nam Fiadh – sloping north Hydrology: North of river Hogaraid and lies within the associated tributaries Peat Depth: (min) 0.50m - (max) m. Generally, <1.0m Slope Gradient: 0° to 15° Exposure: None Location and topography: Directly west of Caol Loch – Strongly Sloping westward in the central Zone area, flattening out in area of proposed infrastructure . Geomorphology: Immediately west of Caol Loch, with some evidence of artificial drainage running | Micro-siting in to areas of thinner peat is recommended, if required. In areas where peat depths exceed 1m, it is recommended that floating track construction methods should be adopted. | Negligible | |----|----------------------------|------------|---|--|------------| | | | | | Adoption of best practice methods to manage drainage in | | | | | | Slope Gradient: 0° to 30°+ | excavations
works. | | | | | | Exposure: Proposed turbine and associated infrastructure, minor | | | | H7 | Proposed
tracks, T10,
T11 and T12 | Negligible | Location and topography: North of Caol Loch – gently sloping south east Geomorphology: Some evidence of artificial drainage in the northern Zone area Peat Depth: (min) 0.1m - (max) 3.5m. Average: 0.85m Slope Gradient: 0° to 10° Exposure: Proposed turbine and associated infrastructure | Micro-siting in to areas of thinner peat is recommended, if required. Adoption of best practice methods to manage drainage in excavations works. | Negligible | |----|---|------------|--
--|------------| | H8 | Proposed track
and T1 | Low | Location and topography: North west of Caol Loch – Generally flat ground Geomorphology: Some evidence of Artificial Drainage north west zonal area. Peat Depth: (min) 0.1m - (max) 2.5m. Average: 0.52m Slope Gradient: 0° to 15° Exposure: Proposed turbine, associated infrastructure and existing tracks | Micro-siting in to areas of thinner peat is recommended, if required. In areas where peat depths exceed 1m, it is recommended that floating track construction methods should be adopted. Adoption of best practice methods to manage drainage in excavations works. | Negligible | | H9 | N/A | Low | Location and | No Infractruatura | Mogligible | |-----|-----------------------|-----|---|---|------------| | ПУ | IN/A | Low | topography: | No Infrastructure proposed | Negligible | | | | | North eastern edge of | | | | | | | the Site – sloping south west | | | | | | | | | | | | | | Geomorphology: The | | | | | | | Giligill burn spans from the north west to | | | | | | | the south eastern | | | | | | | edges of H9, some tributaries extend | | | | | | | towards the northern
Site boundary. There | | | | | | | is evidence of artificial | | | | | | | drainage running to the northern Site | | | | | | | boundary. | | | | | | | Peat Depth: (min)
0.1m - (max) 4.1m. | | | | | | | Average: 1.09m | | | | | | | | | | | | | | Slope Gradient: 0° to 30+° | | | | | | | | | | | | | | Exposure: Minor | | | | | | | Watercourse, N/A | | | | H10 | Proposed track,
T8 | Low | Location and topography: North | If required,
micro-siting onto | Negligible | | | | | western Site boundary | thinner peat is | | | | | | complex topography, sloping | recommended, if required | | | | | | downwards both east and west of a central | 1 | | | | | | peak | n areas where
peat depths | | | | | | | exceed 1m, it is | | | | | | | | | | | | | Geomorphology: The | recommended | | | | | | Geomorphology: The
Giligill Burn runs east | recommended
that floating
track | | | | | | | recommended
that floating | | | | | | Giligill Burn runs east
to west. Extensive
evidence of historic
peat workings. | recommended
that floating
track
construction | | | | | | Giligill Burn runs east
to west. Extensive
evidence of historic
peat workings.
Peat Depth: (min) | recommended
that floating
track
construction
methods should
be adopted | | | | | | Giligill Burn runs east
to west. Extensive
evidence of historic
peat workings. | recommended
that floating
track
construction
methods should | | | | | | Giligill Burn runs east
to west. Extensive
evidence of historic
peat workings.
Peat Depth: (min)
0.1m - (max) 3.80m.
Average: 0.76m | recommended that floating track construction methods should be adopted Adoption of best practice methods to manage | | | | | | Giligill Burn runs east
to west. Extensive
evidence of historic
peat workings.
Peat Depth: (min)
0.1m - (max) 3.80m. | recommended that floating track construction methods should be adopted Adoption of best practice methods to manage drainage in excavations | | | | | | Giligill Burn runs east to west. Extensive evidence of historic peat workings. Peat Depth: (min) 0.1m - (max) 3.80m. Average: 0.76m Slope Gradient: 0° to | recommended that floating track construction methods should be adopted Adoption of best practice methods to manage drainage in | | | | | | Giligill Burn runs east to west. Extensive evidence of historic peat workings. Peat Depth: (min) 0.1m - (max) 3.80m. Average: 0.76m Slope Gradient: 0° to 30+° Exposure: Proposed | recommended that floating track construction methods should be adopted Adoption of best practice methods to manage drainage in excavations | | | | | | Giligill Burn runs east to west. Extensive evidence of historic peat workings. Peat Depth: (min) 0.1m - (max) 3.80m. Average: 0.76m Slope Gradient: 0° to 30+° | recommended that floating track construction methods should be adopted Adoption of best practice methods to manage drainage in excavations | | | H11 | No
Infrastructure | Low | Location and
topography: In the
vicinity of Sithean
Mor, south of
Pentland Road –
sloping south east | No Infrastructure proposed | Negligible | |-----|----------------------|-----|--|----------------------------|------------| | | | | Geomorphology: Potential area of historic peat workings towards the west of the Zone. Peat Depth: (min) 0.5m - (max) 4.10m. Average: 1.60m | | | | | | | Slope Gradient: 0° to
15° | | | | | | | Exposure: N/A | | | | | | | | | | # 6.2 Embedded Mitigation Embedded mitigation includes measures taken during design of the Development to reduce the potential for peat slide risk. In summary the principal measures that have been taken are: - Locating infrastructure on shallower slopes, where possible; and - Locating infrastructure on areas of shallow peat (or no peat) where possible. #### 6.3 Peat Slide Mitigation Recommendations The following mitigation measures should be adopted post consent stage to validate the PSRA and influence the detailed design of the Development: - Ground investigations prior to detailed design; - Identification of areas sensitive to changes in drainage regime prior to detailed design: - Update the PSRA as necessary following detailed ground investigations; - Development of a drainage strategy that will not create areas of concentrated flow and will not affect the current peatland hydrology; - Design of a Development drainage system for tracks and hardstanding that will require minimal ongoing maintenance during the operation of the windfarm; - Inspection and maintenance of the drainage systems during construction and operation; - Identification of suitable areas for stockpiling material during construction prior to commencement of works; and - Consideration of specific construction methods appropriate for infrastructure in peat land (i.e. geogrids) as part of design Development. # 7 PSRA CONCLUSIONS This PSRA has been undertaken for the proposed Ackron Windfarm in accordance with the SEG. The early stages of the assessment included a desk study, historic peat probing across the Site, followed by further intensive probing exercise on the finalised Site layout design. The information gathered during this investigation was used to develop a Hazard Ranking across the Development Site. The findings of the probing indicate that the majority of the Site is underlain by shallow peat. Based on the peat depths recorded and resulting assessment and analysis, the PSRA has indicated that the majority of the Site is generally of 'low' hazard rank with localised Negligible areas, mainly in areas where no infrastructure is proposed. Notwithstanding this, infrastructure locations and existing site conditions should be checked on Site at the time of construction and micro-siting adopted if required in order to maintain the design objective of avoiding any potential peat slide risk. This Page Intentionally Left Blank APPENDIX A - FIGURES **Site Layout Plan** Figure 13.1.1 **Ackron Wind Farm PSRA** **Superficial Geology** 500 Meters Ref: 3138-REP-100 Date: 06/08/2020 1:13,000 Scale @ A3 Produced By: BM **Ackron Wind Farm PSRA** Figure 13.1.2 **Bedrock Geology** Figure 13.1.3 Ackron Wind Farm PSRA 5.01 - 5.50 1:12,986 Scale @ A3 # **Recorded Peat Depths** Figure 13.1.5 **Ackron Wind Farm PSRA** # Peat Depth Interpolation Figure 13.1,6 **Ackron Wind Farm PSRA** Figure 13.1.8 Ackron Wind Farm PSRA Hazard Rank Zonation Plan Figure 13.1.9 > Ackron Wind Farm PSRA ## APPENDIX B - HAZARD RANK ASSESSMENT RECORDS | 146 291160.7 962780
147 291262.3 962781 | 4.0
3.7 | 4 2 | 0.8
0.6 | 2 2 | R
G | 1.5
1 | 12
4 | 2
1 | Important Habitat
Important Habitat | 8 | 74.54 3
2.83 4 | -6.38 1
0.20 1 | 24
32 | 3
5 | |--|-------------------|--------|------------|--------|--------|------------|-----------|--------|--|--------|----------------------|---------------------|----------|--------------| | 148 291361.0 962785
149 291466.4 962783 | 6.2 | 4 | 0.5 | 1 | R | 1.5 | 6 | 2 | Minor Watercourse | 6 | 44.45 3 | 3.42 1 | 18 | 3 6 | | 150 291459.2 962691 | 7.7
16.2 | 8 | 0.2
0.5 | 1 | R R | 1.5
1.5 | 12 | 2 2 | Minor Watercourse
Minor Watercourse | 6 | 41.33 3
20.25 3 | 8.43 1
2.93 1 | 18
18 | 3 6 | | 151 291261.4 962880
152 291158.1 962879 | 3.5
6.7 | 2 | 1.1
0.4 | 3 | R | 1.5
1.5 | 9 | 2 | Important Habitat
Important Habitat | 8 | 11.75 3
85.00 3 | -0.32 1
-6.71 1 | 24
24 | 3 6 | | 153 291065.4 962879 | 4.0 | 4 | 0.2 | 1 | G | 1 | 4 | 1 | Wind Turbine | 6 | 44.03 3 | 3.15 1 | 18 | 3 | | 154 290965.9 962876
155 290864.2 962878 | 2.8
4.8 | 4 | 0.5
0.7 | 2 | G
G | 1 | 8 | 1
2 | Tracks or Paths
Tracks or Paths | 2 2 | 19.62 3
17.13 3 | 0.73 1
0.68 1 | 6 | 1 1 2 | | 156 290864.7 962986
157 290962.1 962984 | 7.2
4.1 | 4 | 0.3
0.2 | 1 | G | 1 | 4 | 1 | Tracks or Paths
Tracks or Paths | 2 | 85.43 3
93.94 3 | -1.02 1
3.58 1 | 6 | 1 1 | | 158 291063.7 962980 | 1.8 | 1 | 1 | 2 | G | 1 | 2 | i | Minor
Watercourse | 6 | 81.27 3 | -3.62 1 | 18 | 3 3 | | 159 291164.7 962982
160 291164.6 963082 | 6.2
6.5 | 4 | 0.5
0.6 | 1 2 | G
G | 1 1 | 4
8 | 1 2 | Minor Watercourse
Important Habitat | 6
8 | 36.62 3
1.58 4 | -0.46 1
-0.12 1 | 18
32 | 3
5 | | 161 291057.5 963084
162 290959.3 963084 | 3.3
2.7 | 2 | 0.3
0.6 | 1 | G | 1 | 2 | 1 | Minor Watercourse
Minor Watercourse | 6 | 2.34 4
37.58 3 | 0.07 1
0.29 1 | 24
18 | 3
3 | | 163 290861.5 963085 | 6.2 | 4 | 0.6 | 2 | G | 1 | 8 | 2 | Minor Watercourse | 6 | 88.03 3 | 5.73 1 | 18 | 3 6 | | 164 290774.8 963180
165 290862.6 963182 | 4.4
6.5 | 4 | 0.3
0.2 | 1 | R
R | 1.5
1.5 | 6 | 2 2 | Minor Watercourse
Minor Watercourse | 6 | 3.55 4
4.33 4 | -0.03 1
0.47 1 | 24
24 | 3 6 | | 166 290963.7 963183 | 3.3 | 2 | 0.7 | 2 | G | 1 | 4 | 1 | Minor Watercourse | 6 | 10.55 3 | -0.06 1
-0.02 1 | 18
32 | 3 | | 167 291063.8 963185
168 291163.8 963184 | 9.3
3.5 | 2 | 1.1 | 3 | R R | 1.5
1.5 | 9 | 2 2 | Important Habitat
Important Habitat | 8 | 2.78 4
1.82 4 | -0.06 1 | 32 | 5 10 | | 169 291157.9 963285
170 291166.9 963378 | 0.5
1.7 | 1 | 1.2 | 3 | G
G | 1 | 3 2 | 1 | Important Habitat | 8 | 3.19 4
1.73 4 | -0.02 1
-0.04 1 | 32
32 | 5 5 | | 171 291166.1 963481 | 1.4 | 1 | 0.8 | 2 | G | 1 | 2 | i | Important Habitat | 8 | 20.98 3 | 0.33 1 | 24 | 3 | | 172 291065.8 963481
173 290956.4 963485 | 6.7
2.3 | 2 | 0.4
0.9 | 2 | G | 1 | 4 | 1 | Important Habitat
Important Habitat | 8 | 33.82
22.95
3 | 3.46 1
0.64 1 | 24
24 | 3 3 3 | | 174 290864.7 963486
175 290661.6 963482 | 6.8
6.2 | 4 | 0.4
0.5 | 1 | R | 1.5 | 6 | 2 | Important Habitat
Important Habitat | 8 | 72.68 3
1.48 4 | 0.86 1
0.16 1 | 24
32 | 3 6 | | 176 290668.0 963585 | 4.8 | 4 | 0.6 | 2 | R | 1.5 | 12 | 2 | Important Habitat | 8 | 2.80 4 | -0.23 1 | 32 | 5 10 | | 177 290562.3 963683
178 290467.6 963779 | 0.6
0.6 | 1 | 1.1
1.1 | 3 | G | 1 | 3 | 1 | Important Habitat
Important Habitat | 8 | 2.10 4
2.45 4 | -0.01 1
-0.03 1 | 32
32 | 5 5 5 | | 179 290472.3 963882
180 290481.5 963982 | 1.8
1.2 | 1 | 0.4
0.9 | 1 2 | G | 1 | 1 2 | 1 | Important Habitat
Important Habitat | 8 | 7.11 4
1.72 4 | 0.20 1
0.02 1 | 32
32 | 5 5 | | 181 290563.6 963982 | 2.3 | 2 | 0.9 | 2 | R | 1.5 | 6 | 2 | Important Habitat | 8 | 1.99 4 | 0.08 | 32 | 5 10 | | 182 290561.6 963882
183 290564.5 963781 | 1.6
0.5 | 1 | 1.1 | 3 | G G | 1.5
1 | 4.5
3 | 1 | Important Habitat
Important Habitat | 8 | 1.58 4
1.99 4 | 0.01 1
0.02 1 | 32
32 | 5 5 5 | | 184 290666.4 963686
185 290661.7 963783 | 1.6
0.7 | 1 | 0.5
1.3 | 1 | G | 1
1.5 | 1
4.5 | 1 | Important Habitat
Important Habitat | 8 | 2.77 4
1.49 4 | 0.07 1
0.00 1 | 32
32 | 5 5 | | 186 290665.4 963882 | 2.8 | 2 | 0.9 | 2 | Ğ | 1 | 4.5 | 1 | Important Habitat | 8 | 0.84 4 | 0.04 1 | 32 | 5 5 | | 187 290666.2 963980
188 290764.7 963981 | 4.8
6.4 | 4 | 0.9
0.6 | 2 | G
R | 1
1.5 | 8
12 | 2 2 | Important Habitat
Important Habitat | 8 | 2.26 4
2.29 4 | -0.17 1
-0.09 1 | 32
32 | 5 10
5 10 | | 189 290763.5 963886
190 290761.0 963782 | 5.2 | 4 | 1.1 | 3 | G | 1
1.5 | 12 | 2 | Important Habitat
Important Habitat | 8 | 2.57 4
31.26 3 | -0.07 1
3.67 1 | 32 | 5 10 | | 191 290763.0 963682 | 9.3 | 6 | 0.5 | 1 | G | 1.5 | 6 | 2 | Important Habitat | 8 | 72.78 3 | 11.11 2 | 24 | 3 6 | | 192 290760.2 963583
193 290860.9 963579 | 11.3
7.2 | 6
4 | 0.4
0.4 | 1 | G
R | 1
1.5 | 6 | 2 2 | Important Habitat
Important Habitat | 8 8 | 80.65 3
46.99 3 | 13.59 2
-4.11 1 | 24
24 | 3
3 | | 194 290867.6 963692 | 6.0 | 4 | 0.6 | 2 | R | 1.5 | 12 | 2 | Important Habitat | 8 | 40.98 3 | -1.99 1 | 24 | 3 6 | | 195 290866.8 963790
196 290860.8 963886 | 3.7
3.2 | 2 | 0.5
0.8 | 2 | R | 1
1.5 | 6 | 2 | Important Habitat
Important Habitat | 8 | 9.09 4
2.46 4 | -0.52 1
0.10 1 | 32
32 | 5 5 | | 197 290863.7 963986
198 290964.9 963980 | 8.4
5.7 | 6
4 | 0.8
0.7 | 2 2 | G | 1
1 | 12
8 | 2 2 | Important Habitat
Important Habitat | 8 | 2.49 4
1.93 4 | -0.13 1
-0.05 1 | 32
32 | 5 10
5 10 | | 199 290962.5 963881 | 3.1 | 2 | 0.4 | 1 | C | 2 | 4 | 1 | Important Habitat | 8 | 19.32 3 | 0.82 | 24 | 3 3 | | 200 290965.3 963785
201 290963.6 963684 | 6.1
3.2 | 2 | 1.3
1.1 | 3 | R
G | 1.5
1 | 18
6 | 3
2 | Important Habitat
Important Habitat | 8 | 2.32 4
1.88 4 | 0.18 1
-0.09 1 | 32
32 | 5 15 10 | | 202 290964.2 963583
203 291064.4 963588 | 4.8
2.1 | 4 | 0.9
0.5 | 2 | G
R | 1
1.5 | 8 | 2 | Important Habitat
Important Habitat | 8 | 0.99 4
0.90 4 | 0.00 1
-0.03 1 | 32
32 | 5 10 5 | | 204 291063.6 963685 | 6.4 | 4 | 1.1 | 3 | G | 1 | 12 | 2 | Important Habitat | 8 | 2.51 4 | -0.27 1 | 32 | 5 10 | | 205 291062.8 963781
206 291063.8 963882 | 4.2
4.3 | 4 | 0.9
0.7 | 2 | R
G | 1.5
1 | 12
8 | 2 2 | Important Habitat
Important Habitat | 8 | 2.97 4
23.59 3 | -0.14 1
0.53 1 | 32
24 | 5 10 6 | | 207 291156.6 963880
208 291159.7 963782 | 3.7
2.1 | 2 | 0.5
0.9 | 1 | G | 1
1 | 2 | 1 | Important Habitat
Important Habitat | 8 | 98.87 3
49.27 3 | 5.75 1
-0.57 1 | 24
24 | 3
3 | | 209 291162.3 963681 | 2.3 | 2 | 2.1 | 3 | R | 1.5 | 9 | 2 | Important Habitat | 8 | 7.16 4 | 0.25 1 | 32 | 5 10 | | 210 291262.0 963582
211 291263.4 963783 | 1.7
2.1 | 1 2 | 2.6
0.9 | 3
2 | G
G | 1 1 | 3
4 | 1 | Important Habitat
Important Habitat | 8 | 96.42 3
46.00 3 | 1.99 1
1.56 1 | 24
24 | 3 3 3 | | 212 291359.1 963687
213 291362.6 963584 | 1.5
8.2 | 1 | 1.7
0.8 | 3 | R | 1.5
1 | 4.5
12 | 1 | Important Habitat | 8 | 35.51 3
121.72 3 | 0.98 1
9.28 1 | 24
24 | 3 | | 214 291362.8 963485 | 9.7 | 6 | 0.8 | 2 | G | 1 | 12 | 2 | Important Habitat
Important Habitat | 8 | 149.40 3 | 8.19 1 | 24 | 3 6 | | 215 291465.0 963482
216 291460.8 963587 | 6.1
5.8 | 4 | 1 0.7 | 2 | G | 1
1.5 | 8
12 | 2 | Important Habitat Important Habitat | 8 | 50.60 3
24.42 3 | 3.47 1
0.92 1 | 24
24 | 3 6 | | 217 291461.7 963684 | 1.8 | 1 | 2 | 3 | G G | 1 | 3 | ì | Important Habitat | 8 | 1.75 4 | -0.03 1 | 32 | 5 5 | | 218 291560.8 963685
219 291561.1 963581 | 2.7
4.7 | 2 | 0.6
2.6 | 2 | R
G | 1.5
1 | 6
12 | 2 2 | Important Habitat
Important Habitat | 8 | 2.02 4
19.48 3 | 0.01 1
-1.43 1 | 32
24 | 5
3 | | 220 291563.0 963481 | 9.8
12.1 | 6 | 0.2
0.4 | 1 | c | 2 | 12 | 2 | Important Habitat | 8 | 19.30 3
34.10 3 | 1.38 1
-0.43 1 | 24
24 | 3 6 | | 221 291562.6 963397
222 291663.3 963582 | 5.9 | 4 | 0.1 | 1 | G | 1.5
1 | 4 | 1 | Important Habitat
Minor Watercourse | 6 | 59.04 3 | 10.24 2 | 18 | 3 3 | | 223 291660.1 963683
224 291763.0 963681 | 5.4
4.8 | 4 | 0.9 | 2 | G
R | 1
1.5 | 8 | 2 | Minor Watercourse
Important Habitat | 6 | 20.15 3
65.48 3 | 7.36 1
-5.66 1 | 18
24 | 3 6 | | 225 291962.6 963381
226 291163.5 962688 | 5.2
4.8 | 4 | 1.1 | 3 | G | 1 | 12 | 2 | Important Habitat
Important Habitat | 8 | 2.95 4
76.20 3 | 0.07 1
-6.96 1 | 32 | 5 10 3 | | 227 291158.5 962581 | 7.0 | 4 | 0.2 | 1 | G | 1 | 4 | 1 | Important Habitat | 8 | 81.73 3 | -6.53 1 | 24
24 | 3 3 | | 228 291162.4 962480
229 291265.5 962481 | 7.8
6.8 | 4 | 0.3
0.4 | 1 | G | 1 | 4 | 1 | Important Habitat
Important Habitat | 8 | 42.43 3
37.29 3 | 2.66 1
-3.47 1 | 24 | 3 3 | | 230 291367.5 962481 | 2.1 | 2 | 1.9 | 3 | R | 1.5 | 9 | 2 | Important Habitat | 8 | 3.75 4 | 0.12 1 | 32 | 5 10 | | 231 291364.0 962381
232 291464.0 962483 | 4.1
7.9 | 4 | 0.4
0.4 | 1 | R
G | 1.5
1 | 4 | 2
1 | Important Habitat
Important Habitat | 8 | 41.18 3
94.36 3 | 0.46 1
13.93 2 | 24
24 | 3 3 | | 233 291462.8 962588
234 291361.6 962583 | 6.3
0.8 | 4 | 1 1.8 | 2 | G | 1 | 8 | 2 | Minor Watercourse | 6 | 69.36 3
45.60 3 | -2.94 1
-0.75 1 | 18
24 | 3 6 3 | | 235 291261.7 962583 | 3.0 | 2 | 0.4 | 1 | G | 1 | 2 | i | Important Habitat | 8 | 1.57 4 | 0.04 1 | 32 | 5 | | 236 291262.9 962688
237 291367.3 962682 | 1.2
2.9 | 2 | 0.6
0.4 | 1 | G
R | 1.5 | 3 | 1 | Important Habitat
Important Habitat | 8 | 2.37 4
2.48 4 | -0.02 1
0.10 1 | 32
32 | 5 5 5 | | 238 291563.4 962781
239 291463.7 962883 | 3.8
4.2 | 2 | 0.7
1.5 | 2 | G
R | 1
1.5 | 4
18 | 1 3 | Wind Turbine
Wind Turbine | 6 | 59.38 3
84.78 3 | 3.52 1
-5.38 1 | 18
18 | 3 3 | | 240 291360.5 962882 | 8.9 | 6 | 0.5 | 1 | R | 1.5 | 9 | 2 | Minor Watercourse | 6 | 21.77 3 | 4.44 1 | 18 | 3 6 | | 241 291359.3 962983
242 291265.5 962981 | 3.7
12.6 | 6 | 0.9
0.6 | 2 | G
G | 1 | 4
12 | 1 2 | Minor Watercourse
Minor Watercourse | 6 | 91.36 3
26.86 3 | 13.27 2
6.45 1 | 18
18 | 3 3 6 | | 243 291262.4 963082
244 291366.7 963082 | 8.8
5.8 | 6 | 0.5
0.5 | 1 | G
C | 1 2 | 6 | 2 2 | Important Habitat
Important Habitat | 8
8 | 46.99 3
133.59 3 | 4.26 1
-5.40 1 | 24
24 | 3 6 | | 245 291461.8 962983 | 6.6 | 4 | 0.5 | 1 | G | 1 | 4 | i | Important Habitat | 8 | 65.68 3 | -5.18 1 | 24 | 3 | | 246 291464.8 963085
247 291463.6 963185 | 3.0
2.1 | 2 | 0.7
0.6 | 2 | R
G | 1.5
1 | 4 | 1 | Important Habitat
Important Habitat | 8 | 35.50 3
22.80 3 | -1.63 1
0.93 1 | 24
24 | 3 3 | | 248 291464.7 963284
249 291464.0 963385 | 3.8
6.3 | 2 | 1.2
0.9 | 3 | R | 1.5
1.5 | 9
12 | 2 | Wind Turbine
Important Habitat | 6 | 79.15 3
85.41 3 | -4.44 1
5.78 1 | 18
24 | 3 6 | | 250 291362.9 963383 | 15.3 | 8 | 0.4 | 1 | G | 1 | 8 | 2 | Wind Turbine | 6 | 164.20 3 | -8.10 1 | 18 | 3 6 | | 251 291360.1 963278
252 291362.1 963181 | 5.4
11.7 | 6 | 0.5
0.3 | 1 | G | 1 | 6 | 2 | Wind Turbine
Wind Turbine | 6 | 72.82
3
66.35 3 | -1.97 1
0.67 1 | 18
18 | 3
3 | | 253 291263.3 963181
254 291267.7 963285 | 13.1
13.5 | 6 | 0.7
0.8 | 2 | G
G | 1 1 | 12
12 | 2 2 | Important Habitat
Important Habitat | 8
8 | 75.40 3
84.26 3 | 10.59 2
9.56 1 | 24
24 | 3 6 | | 255 291266.1 963380 | 4.8 | 4 | 1.1 | 3 | R | 1.5 | 18 | 3 | Important Habitat | 8 | 100.93 3 | 5.86 1 | 24 | 3 9 | | 256 291261.0 963484
257 291260.4 963684 | 4.2
1.0 | 4 | 1
3.2 | 2
8 | G
G | 1
1 | 8 8 | 2 2 | Important Habitat
Important Habitat | 8 | 112.81 3
1.14 4 | 5.02 1
-0.01 1 | 24
32 | 3 6
10 | | 258 291159.0 963583
259 290766.7 963484 | 0.8 | 1 | 4.1
0.3 | 8 | G | 1
1.5 | 8 | 2 | Important Habitat | 8 | 41.59 3
49.15 3 | -0.27 1
6.18 1 | 24
24 | 3 6 | | 260 290761.8 963380 | 9.9 | 6 | 0.4 | 1 | G | 1.5 | 6 | 2 | Important Habitat | 8 | 56.22 3 | 5.38 1 | 24 | 3 6 | | 261 290862.3 963383
262 290961.4 963381 | 8.2
9.7 | 6 | 0.4
0.5 | 1 | G | 1 1 | 6 | 2 2 | Important Habitat
Important Habitat | 8 | 146.34 3
116.72 3 | 21.62 2
0.51 1 | 24
24 | 3 6 | | 263 291059.6 963379 | 8.0 | 4 | 0.2 | 1 | G | 1 | 4 | 1 | Important Habitat | 8 | 43.52 3 | 1.58 1 | 24 | 3 | | 264 291061.1 963283
265 290962.8 963283 | 12.9
4.9 | 4 | 0.3
0.8 | 2 | G | 1 | 8 | 2 2 | Wind Turbine
Minor Watercourse | 6 | 21.92 3
90.47 3 | 2.62 1
1.97 1 | 18
18 | 3 6 | | 266 290861.8 963281
267 290763.3 963283 | 7.4
3.3 | 4 | 0.6
1.5 | 2 | G
G | 1 1 | 8 | 2 2 | Minor Watercourse
Minor Watercourse | 6 | 101.12 3
91.25 3 | 4.76 1
3.17 1 | 18
18 | 3 6 | | 268 291963.1 962083 | 1.9 | 1 | 1.3 | 3 | R | 1.5 | 4.5 | 1 | Important Habitat | 8 | 2.13 4 | 0.04 1 | 32 | 5 | | 269 291861.2 962081
270 291762.8 962082 | 3.7
5.3 | 4 | 2.4
0.7 | 2 | G | 1 | 8 | 2 | Important Habitat
Wind Turbine | 6 | 54.62 3
36.67 3 | 2.36 1
-1.77 1 | 24
18 | 3 6 | | 271 291664.3 962084
272 291560.7 962080 | 4.1
13.2 | 4 | 0.3
0.2 | 1 | G | 1 1 | 4 | 1 2 | Wind Turbine
Wind Turbine | 6 | 63.47 3
166.45 3 | -3.61 1
-19.44 1 | 18
18 | 3 3 | | 273 291463.0 962080 | 6.2 | 4 | 0.3 | 1 | G | 1 | 4 | 1 | Important Habitat | 8 | 194.96 3 | 11.33 2 | 24 | 3 | | 274 291361.2 962076
275 291262.5 962075 | 3.9
3.0 | 2 | 1.1
2.4 | 3 | R | 1
1.5 | 9 | 2 | Important Habitat
Important Habitat | 8 | 138.09 3
88.61 3 | 0.31 1
5.40 1 | 24
24 | 3 6 | | 276 291163.3 962083
277 291063.4 962066 | 2.9
7.0 | 2
4 | 0.6
0.3 | 2 | G | 1
1 | 4 | 1 1 | Important Habitat
Important Habitat | 8 8 | 79.88 3
72.58 3 | 0.90 1
-4.10 1 | 24
24 | 3 3 3 | | 278 290960.1 962081 | 19.3 | 8 | 0.3
0.4 | 1 | G | 1 | 8 | 2 | Minor Watercourse | 6 | 23.31 3 | 5.91 1 | 18 | 3 6 | | 279 290846.2 962086
280 290764.6 962080 | 12.3
10.4 | 6 | 0.2 | 1 | G | 1 1 | 6 | 2 | Important Habitat
Important Habitat | 8 | 13.86 3
10.99 3 | -2.50 1
-2.08 1 | 24
24 | 3 6 | | 281 290662.8 962083
282 290565.2 962083 | 7.7
0.6 | 4 | 0.5
2.3 | 1 3 | R
R | 1.5
1.5 | 6
4.5 | 2 | Important Habitat
Important Habitat | 8 8 | 45.09 3
0.07 4 | 8.09 1
0.00 1 | 24
32 | 3 6
5 5 | | 283 290458.5 962088
284 290368.1 962082 | 1.3 | 1 | 2.2 | 3 | R | 1.5 | 4.5 | 1 | Important Habitat | 8 | 1.73 4
61.39 3 | -0.04 1
-1.82 1 | 32
24 | 5
5
3 | | 285 290263.5 962080 | 2.1
6.6 | 4 | 0.1 | 1 | G | 1 | 4 | 1 | Tracks or Paths | 2 | 3.84 4 | 0.36 1 | 8 | 3 2 2 | | 286 290162.4 962082
287 290059.5 962084 | 2.3
4.6 | 2
4 | 1
0.1 | 2
1 | R
G | 1.5
1 | 6
4 | 2 | Minor Watercourse
Minor Watercourse | 6 | 37.17 3
55.54 3 | 1.10 1
3.17 1 | 18
18 | 3 6
3 3 | | 288 289964.1 962077
289 289962.3 962185 | 4.9
8.5 | 4 | 0.2
0.1 | 1 | G
G | 1 1 | 4 | 1 2 | Road
Minor Watercourse | 3 | 16.19 3
8.20 4 | 0.31 1
0.51 1 | 9
24 | 2 2 6 | | 290 290063.6 962182
291 290163.1 962186 | 1.4 | 1 | 0.1 | 1 | G | 1 | 1 | 1 | Tracks or Paths Tracks or Paths | 2 | 19.88 3
4.30 4 | -0.38 1 | 6 | 1 1 | | 292 290269.9 962182 | 3.4
2.8
7.9 | 2 | 0.2
0.3 | 1 | R | 1.5
1.5 | 3 | 1 | Tracks or Paths | 2 | 14.89 3 | 0.22 1
-0.66 1 | 6 | 2 1 | | 293 290362.5 962183
294 290463.6 962181 | 7.9
1.5 | 4 | 0.2
0.9 | 1 2 | G
R | 1
1.5 | 4 3 | 1 1 | Tracks or Paths
Important Habitat | 2 8 | 26.52
13.85
3 | -0.43 1
-0.28 1 | 6
24 | 1 1 3 | | | | | | | | | | | - | | | | | | | 295 2005621 962182 1.8 | 11 | 1 | Tractors on Patible Major Water course Monor | 2 | 1.50 1 | 1 | |---|---|--|--|---|--|-------------| | 425 29140.2 951478 16.0 8 426 29197.3 951478 6.3 4 427 290966.5 951480 4.0 2 428 29086.2 951482 4.9 4 429 290761.9 951481 2.4 2 8 430 290664.6 951482 18.5 8 431 29056.9 951481 22.4 8 431 29056.9 951481 22.4 8 432 290461.7 951487 13.5 6 433 290461.0 951485 0.7 1 | 0.4 1 G 0.4 1 G 0.5 1 G 1 2 R 0.4 1 R 0.1 1 R 0.1 1 R 0.3 1 G 0.5 1 G 2.8 3 R | 1.5 3
1.5 12
1 8
1 6
1.5 4.5 | 2 Minor Watercourse 1 Minor Watercourse 1 Important Habitat 2 Important Habitat 1 Important Habitat 2 Important Habitat 2 Important Habitat 2 Important Habitat 1 Important Habitat 1 Important Habitat 1 Important Habitat | 6 25.08 3 6 107.93 3 8 117.46 3 8 26.82 3 8 18.45 3 8 95.22 3 8 12.068 3 8 37.96 3 1.78 4 | 10.83 2 18
118.60 2 18
-3.04 1 24
1.39 1 24
1.07 1 24
-10.60 1 24
25.62 2 24
4.71 1 24
0.01 1 32 | 3 3 3 3 3 6 | | 444 290461.8 961287
445 290461.7 961184 | 6.5 4
6.8 4 | 0.2 1 G
0.4 1 R | 1
1.5 | 4
6 | 1 Important Habitat
2 Important Habitat | 8 127 | 7.39 3
7.58 3 | 12.61 2
23.39 2 | 24
24 | 3 | 6 | |---|-------------------------|--------------------------------|------------|------------|--|--------------|----------------------------|-----------------------------|----------------|--------|----------| | 446 290365.2 961180
447 290367.0 961182 | 8.4
9.0 6 | 0.4
0.4
1 R
G | 1.5
1 | 9
6 | 2 Important Habitat
2 Important Habitat | 8 74
8 76 | 4.98 3
6.88 3 | 6.59 1
6.94 1 | 24
24 | 3 | 6
6 | | 448 290363.0 961280
449 290261.9 961284 | 6.4 4
3.3 2 | 1.5 3 G
0.8 2 G | 1 1 | 12
4 | 2 Important Habitat
1 Important Habitat | | 2.88 4
1.77 3 | -0.32 1
0.43 1 | 32
24 | 5
3 | 10
3 | | 450 290261.6 961183
451 290163.0 961183 | 1.1 1
4.2 4 | 1.8
0.2 1 R | 1
1.5 | 3
6 | 1 Important Habitat
2 Important Habitat | | 1.35 4
7.66 3 | 0.02 1
2.26 1 | 32
24 | 5
3 | 5
6 | | 452 290163.1 961283
453 290063.3 961282 | 2.3
3.0
2 | 0.1 1 R
0.6 2 G | 1.5
1 | 3 4 | 1 Important Habitat 1 Important Habitat | | 2.20 4
6.23 4 | 0.08 1
-0.22 1 | 32
32 | 5
5 | 5 | | 454 290055.9 961183
455 289961.9 961289 | 3.2
14.6 6 | 0.3 1 G | 1 | 2 | 1 Important Habitat
2 Important Habitat | 8 0 | 0.76 4
6.15 3 | 0.03 1
4.39 1 | 32
24 | 5 | 5 | | 456 289963.1 961183
457 289859.3 961178 | 13.4 6
7.5 4 | 0.4 1 G | 1 | 6 | 2 Important Habitat
1 Road | 8 2 | 2.16 4
7.37 3 | -0.51 1
5.17 1 | 32
9 | 5 | 10 | | 458 289865.0 961281
459 289761.3 961281 | 14.9 6
12.9 6 | 0.1 1 R | 1.5 | 9 | 2 Important
Habitat | 8 102 | 2.35 3
0.97 3 | -4.86 1
6.25 1 | 24 | 3 | 6 | | 460 289883.0 961091
461 289962.9 961083 | 4.0 2 | 0.2 | 1 | 2 | 1 Road
2 Important Habitat | 3 30 | 0.64 3
0.14 3 | 3.73 1
-5.95 1 | 9 | 2 | 2 | | 462 290060.5 961082 | 15.3 8
10.5 6 | 0.1 1 G | 1 | 6 | 2 Important Habitat | 8 43 | 3.69 3 | 2.87 1 | 24
24 | 3 | 6 | | 463 290157.6 961080
464 290261.9 961082 | 5.1 4
5.0 4 | 0.2 1 G | 1.5 | 6 | 1 Important Habitat
2 Important Habitat | 8 8 | 3.01 3
8.82 4 | 0.38 1
0.31 1 | 24
32 | 5 | 3
10 | | 465 290362.6 961085
466 290462.1 961080 | 20.5
3.8 2 | 0.2 1 R
0.5 1 R | 1.5
1.5 | 12
3 | 2 Important Habitat
1 Important Habitat | 8 128 | 9.27 3
8.80 3 | 13.65 2
-23.19 1 | 24
24 | 3 3 | 3 | | 467 290560.1 961082
468 290560.1 961082 | 13.2 6
13.2 6 | 0.2 1 R
0.2 1 R | 1.5
1.5 | 9 | 2 Important Habitat
2 Important Habitat | 8 32 | 2.20 3
2.20 3 | -5.17 1
-5.17 1 | 24
24 | 3 3 | 6 | | 469 290660.5 961084
470 290754.9 961082 | 5.8 4
0.8 1 | 0.3 1 G
3.5 8 G | 1 1 | 8 | 1 Important Habitat
2 Important Habitat | 8 1 | 2.05 3
1.48 4 | 1.86 1
0.02 1 | 24
32 | 5 | 3
10 | | 471 290762.5 961183
472 290861.4 961182 | 1.0
0.8
1 | 3.7
1.6 3 G | 1.5
1 | 3 | 2 Important Habitat
1 Important Habitat | 8 1 | 2.34 4
1.37 4 | -0.01 1
-0.01 1 | 32
32 | 5 | 10
5 | | 473 290859.0 961079
474 290963.8 961079 | 2.5 2
1.5 1 | 1.1
1.9 3 G | 1 1 | 6 3 | 2 Important Habitat
1 Important Habitat | 8 1 | 1.49 4
1.95 4 | 0.05 1
0.04 1 | 32
32 | 5
5 | 10
5 | | 475 290963.6 961180
476 291064.7 961181 | 5.1 4
2.4 2 | 0.6 2 G
0.3 1 G | 1
1 | 8 2 | 2 Important Habitat
1 Important Habitat | 8 2 | 2.35 4
2.44 4 | 0.20 1
-0.01 1 | 32
32 | 5
5 | 10
5 | | 477 291063.3 961082
478 291158.8 961079 | 2.1 2
1.2 1 | 0.8
5.3 8 G | 1 1 | 4
8 | 1 Important Habitat
2 Important Habitat | | 2.31 4
1.77 4 | 0.08 1
0.00 1 | 32
32 | 5
5 | 5
10 | | 479 291160.3 961178
480 291261.1 961179 | 3.2
3.7
2 | 0.8 2 G
0.6 2 G | 1
1 | 4 | 1 Important Habitat 1 Important Habitat | 8 4 | 0.41 4
4.16 4 | 0.01 1
-0.01 1 | 32
32 | 5
5 | 5
5 | | 481 291261.1 961083
482 291363.5 961084 | 4.5 4
4.9 4 | 0.2 1 G
0.4 1 R | 1
1.5 | 4
6 | 1 Important Habitat 2 Minor Watercourse | | 4.12 3
4.29 4 | 1.38 1
0.35 1 | 24
24 | 3 3 | 3
6 | | 483 291363.3 961183
484 291457.1 961183 | 6.6 4
7.5 4 | 0.2 1 G
1.5 3 G | 1
1 | 4
12 | 1 Minor Watercourse 2 Minor Watercourse | | 4.06 3
2.73 3 | 5.00 1
0.21 1 | 18
18 | 3 3 | 3 6 | | 485 291460.9 961079
486 291560.1 961083 | 4.1 4
3.3 2 | 1.1 3 R
1.8 3 R | 1.5
1.5 | 18
9 | 3 Important Habitat
2 Important Habitat | | 1.22 4
0.44 4 | 0.07 1
0.00 1 | 32
32 | 5
5 | 15
10 | | 487 291561.4 961084
488 291561.8 960982 | 3.3 2
5.1 4 | 1.8 3 R
0.7 2 G | 1.5
1 | 9 8 | 2 Important Habitat
2 Important Habitat | | 1.66 4
1.94 4 | 0.04 1
0.16 1 | 32
32 | 5
5 | 10
10 | | 489 291560.4 960982
490 291560.9 960884 | 5.3 4
6.0 4 | 0.7 2 G
0.9 2 G | 1
1 | 8
8 | 2 Important Habitat
2 Important Habitat | 8 0 | 1.13 4
0.92 4 | 0.02 1
-0.05 1 | 32
32 | 5
5 | 10
10 | | 491 291561.4 960782
492 291562.3 960682 | 4.2
2.4 4
2 | 0.8 2 R
0.8 2 R | 1.5
1.5 | 12
6 | 2 Important Habitat
2 Important Habitat | 8 1 | 1.63 4
2.35 4 | 0.13 1
0.01 1 | 32
32 | 5
5 | 10
10 | | 493 291562.2 960581
494 291661.4 960582 | 1.4
0.6 1 | 1.1 3 R
3.3 8 R | 1.5
1.5 | 4.5
12 | 1 Important Habitat
2 Important Habitat | 8 2
8 1 | 2.91 4
1.89 4 | 0.01 1
0.02 1 | 32
32 | 5
5 | 5
10 | | 495 291661.4 960683
496 291655.5 960685 | 1.3 1
1.3 1 | 3.8 8 G
3.8 8 G | 1
1 | 8
8 | 2 Important Habitat
2 Important Habitat | 8 1 | 1.26 4
1.85 4 | 0.03 1
-0.02 1 | 32
32 | 5
5 | 10
10 | | 497 291660.1 960783
498 291661.8 960881 | 1.4
1.4 1 | 2.4 3 R
2.5 3 R | 1.5
1.5 | 4.5
4.5 | 1 Important Habitat
1 Important Habitat | 8 0
8 2 | 0.16 4
2.32 4 | 0.00 1
0.05 1 | 32
32 | 5
5 | 5
5 | | 499 291760.5 960883
500 291762.4 960781 | 2.5
2.2
2 | 1.2 3 G
1 2 R | 1
1.5 | 6 | 2 Important Habitat 2 Important Habitat | 8 0 | 0.39 4
2.92 4 | 0.02 1
0.12 1 | 32
32 | 5
5 | 10
10 | | 501 291761.0 960681
502 291763.0 960584 | 0.3
1.2
1 | 0.9 2 R
2 3 G | 1.5
1 | 3 3 | 1 Important Habitat
1 Important Habitat | | 1.93 4
2.54 4 | 0.00 1
-0.03 1 | 32
32 | 5
5 | 5
5 | | 503 291862.9 960984
504 291761.3 960984 | 8.4
2.0 1 | 0.3
0.6
2
G | 1 1 | 6 2 | 2 Important Habitat
1 Important Habitat | 8 7 | 7.71 4
1.13 4 | -0.64 1
0.04 1 | 32
32 | 5
5 | 10
5 | | 505 291660.0 960982
506 291462.2 960984 | 2.2
1.7 2 | 2
3.4
8 R | 1
1.5 | 6
12 | 2 Important Habitat
2 Important Habitat | | 1.45 4
2.29 4 | 0.04 1
-0.02 1 | 32
32 | 5
5 | 10
10 | | 507 291363.1 960982
508 291261.6 960981 | 2.6
6.1 2 | 3.2 8 R
0.3 1 G | 1.5
1 | 24
4 | 3 Important Habitat
1 Important Habitat | | 2.24 4
6.57 3 | 0.11 1
4.30 1 | 32
24 | 5 3 | 15
3 | | 509 291162.1 960981
510 291062.5 960981 | 3.4 2
0.9 1 | 2.4 3 G
5.3 8 G | 1
1 | 6 8 | 2 Important Habitat
2 Important Habitat | | 7.16 4
3.04 4 | 0.25 1
-0.01 1 | 32
32 | 5
5 | 10
10 | | 511 290960.4 960984
512 290861.1 960981 | 1.7
4.7
4 | 1 2 G | 1
1 | 2 4 | 1 Important Habitat
1 Important Habitat | 8 1 | 1.07 4
2.06 3 | 0.00 1
0.10 1 | 32
24 | 5 3 | 5 | | 513 290760.9 960983
514 290661.4 960985 | 1.2
9.1
6 | 2.4 3 R
0.2 1 G | 1.5
1 | 4.5
6 | 1 Important Habitat 2 Important Habitat | | 0.75 4
0.25 3 | 0.01 1
-4.84 1 | 32
24 | 5
3 | 5
6 | | 515 290562.1 960981
516 290462.4 960982 | 9.9
3.7 2 | 0.1 1 G
0.2 1 G | 1
1 | 6 2 | 2 Important Habitat
1 Important Habitat | | 6.14 3
9.61 3 | -7.98 1
-13.46 1 | 24
24 | 3 3 | 6 | | 517 290362.0 960981
518 290262.0 960984 | 13.8
12.3
6 | 0.1 1 R
0.2 1 R | 1.5
1.5 | 9 | 2 Important Habitat
2 Important Habitat | 8 121 | 1.24 3
1.82 3 | 25.64 2
2.78 1 | 24
24 | 3 3 | 6 | | 519 290165.7 960985
520 290062.7 960982 | 3.9
12.0 6 | 0.3 1 G | 1
1 | 2 6 | 1 Important Habitat
2 Road | | 4.59 3
5.74 3 | -1.57 1
17.47 2 | 24
9 | 3
2 | 3
4 | | 521 289961.5 960983
522 289762.8 961385 | 10.6
17.3 8 | 0.1 1 G
0.3 1 G | 1 1 | 6 8 | 2 Road
2 Road | 3 37 | 7.54 3
3.57 3 | 5.16 1
14.94 2 | 9 | 2 2 | 4 | | 523 289861.7 961385
524 289961.0 961383 | 7.9 4
7.2 4 | 0.2 1 G
0.2 1 R | 1
1.5 | 4 6 | 1 Important Habitat 2 Important Habitat | | 1.76 3
4.69 3 | 8.12 1
7.94 1 | 24
24 | 3 3 | 3
6 | | 525 290061.5 961381
526 290162.8 961382 | 5.3
2.8
2 | 0.1 1 R
0.3 1 G | 1.5
1 | 6 2 | 2 Important Habitat
1 Important Habitat | 8 11 | 1.95 3
2.49 4 | 0.84 1
0.05 1 | 24
32 | 3
5 | 6
5 | | 527 290260.3 961386
528 290363.8 961382 | 0.8
1.7
1 | 3.1 8 G
2.4 3 R | 1
1.5 | 8
4.5 | 2 Important Habitat
1 Important Habitat | 8 2 | 2.17 4
1.57 4 | 0.03 1
-0.01 1 | 32
32 | 5
5 | 10 | | 529 290463.0 961379
530 290566.7 961380 | 10.8
19.3 6 | 0.3 1 R
0.2 1 G | 1.5
1 | 9 8 | 2 Important Habitat
2 Important Habitat | 8 40 | 0.41 3
8.41 3 | 6.00 1
28.14 2 | 24
24 | 3 3 | 6 | | 531 290661.9 961376
532 290760.5 961384 | 7.5 4
2.7 2 | 0.6 2 R
0.5 1 G | 1.5
1 | 12 2 | 2 Important Habitat
1 Important Habitat | 8 68 | 8.24 3
9.74 3 | -4.43 1
0.27 1 | 24
24 | 3 3 | 6 | | 533 290861.0 961379
534 290962.2 961384 | 10.0 6
3.9 2 | 0.1 1 R
0.8 2 R | 1.5
1.5 | 9 | 2 Important Habitat
2 Important Habitat | | 8.02 3
6.64 3 | 2.14 1
0.26 1 | 24
24 | 3 3 | 6 | | 535 291058.1 961383
536 291161.5 961383 | 3.4
8.0 6 | 0.1 1 R
0.4 1 G | 1.5
1 | 3
6 | 1 Important Habitat 2 Minor Watercourse | | 0.37 3
4.08 3 | 1.34 1
6.21 1 | 24
18 | 3 3 | 3
6 | | 537 291260.7 961384
538 291361.4 961383 | 7.8 4
3.7 2 | 0.3 1 G
0.5 1 G | 1
1 | 4 2 | 1 Important Habitat 1 Important Habitat | | 0.96 4
1.15 4 | 0.08 1
0.07 1 | 32
32 | 5
5 | 5
5 | | 539 291461.5 961382
540 291461.9 961282 | 4.6
3.8 2 | 0.5 1 G
0.4 1 G | 1
1 | 4 2 | 1 Important Habitat Important Habitat | 8 1 | 5.53 3
1.83 4 | 1.95 1
-0.14 1 | 24
32 | 3
5 | 3
5 | | 541 291361.7 961283
542 291262.3 961280 | 7.0 4
6.6 4 | 0.4 1 G
0.8 2 R | 1
1.5 | 4
12 | 1 Important Habitat 2 Minor Watercourse | 8 70
6 7 | 0.90 3
7.45 4 | 0.16 1
0.02 1 | 24
24 | 3 3 | 3 6 | | 543 291158.3 961281
544 291063.6 961285 | 3.7 2
4.1 4 | 2.2 3 G
0.4 1 G | 1
1 | 6
4 | 2 Important Habitat
1 Important Habitat | 8 6 | 3.07 4
6.83 4 | 0.20 1
0.48 1 | 32
32 | 5
5 | 10
5 | | 545 290965.9 961281
546 290863.0 961287 | 4.3 4
4.5 4 | 0.8 2 G
0.8 2 G | 1
1 | 8 8 | 2 Important Habitat
2 Important Habitat | | 2.20 4
4.59 4 | -0.11 1
0.01 1 | 32
32 | 5
5 | 10
10 | | 547 290759.2 961285
548 290657.8 961285 | 3.0 2
5.6 4 | 0.8 2 R
0.1 1 G | 1.5
1 | 6
4 | 2 Important Habitat
1 Important Habitat | 8 18 | 1.90 4
8.82 3 | 0.01 1
-1.25 1 | 32
24 | 5
3 | 10
3 | | 549 290045.8 962440
550 289982.7 962517 | 3.3
8.5
6 | 0 1 Not Prove
0 1 Not Prove | n 2 | 4
12 | 1 Tracks or Paths 2 Road | 3 4 | 8.97 4
4.34 4 | -0.57 1
0.25 1 | 8
12 | 2 2 | 2 4 | | 551 289870.4 962575
552 289869.7 962755 | 11.4 6
0.9 1 | 0 1 Not Prove
0 1 Not Prove | n 2 | 12
2 | 2 Road
1 Road | 3 9 | 2.12 4
9.78 4 | 0.31 1
-0.05 1 |
12
12 | 2 2 | 4 2 | | 553 289868.4 962752
554 290028.0 962510 | 0.7
1.3
1 | 0 1 Not Prove
0 1 Not Prove | n 2 | 2 2 | 1 Road
1 Road | 3 14 | 8.29 4
4.57 3 | -0.06 1
0.08 1 | 12
9 | 2 2 | 2 | | 555 290065.1 962558
556 290123.6 962605 | 7.4 4
5.1 4 | 0 1 Not Prove
0 1 Not Prove | n 2 | 8 8 | 2 Tracks or Paths 2 Tracks or Paths | 2 4 | 1.73 3
4.76 4 | -0.40 1
-0.40 1 | 8 | 2 | 4 | | 557 290163.0 962749
558 290235.0 962795 | 0.6 1
3.8 2 | 0 1 Not Prove
0 1 Not Prove | n 2 | 4 | 1 Tracks or Paths 1 Tracks or Paths | 2 2 | 2.37 4
2.80 4 | -0.01 1
-0.12 1 | 8 | 2 2 | 2 2 | | 559 290154.4 962761
560 290014.5 962746 | 1.2
11.7
6 | 0 1 Not Prove
0 1 Not Prove | n 2 | 2
12 | 1 Tracks or Paths 2 Tracks or Paths | 2 70 | 2.95 4
0.71 3 | 0.04 1
2.49 1 | 8 | 1 | 2 | | 561 289994.1 962745
562 289963.1 962755 | 6.9 4
8.6 6 | 0 1 Not Prove
0 1 Not Prove | n 2 | 8
12 | 2 Tracks or Paths 2 Road | 3 102 | 1.17 3
2.96 3 | 0.15 1
8.82 1 | 6 | 1
2 | 4 | | 563 290955.6 962795
564 290965.5 962794 | 2.6 2
2.7 2 | 0.3 1 R
0.3 1 G | 1.5 | 3 2 | 1 Minor Watercourse 1 Wind Turbine | 6 87 | 6.15 3
7.97 3 | 12.92 2
-4.73 1 | 18
18 | 3 | 3 | | 565 290974.9 962793
566 290984.4 962795 | 3.3
4.5
4 | 0.5 1 R
0.8 2 G | 1.5 | 8 | 1 Wind Turbine 2 Wind Turbine | 6 75 | 2.72 3
5.31 3 | -4.28 1
-3.58 1 | 18
18 | 3 | 6 | | 567 290994.1 962795
568 290998.8 962797 | 5.0 4
5.9 4 | 1.1 3 G | 1.5 | 12
18 | 2 Wind Turbine
3 Wind Turbine | 6 65 | 0.17 3
5.97 3 | -2.82 1
-2.37 1 | 18
18 | 3 | 9 | | 569 291006.4 962793
570 291014.9 962795 | 6.1 4
4.8 4 | 0.3
0.4
1 G
R | 1
1.5 | 6 | 1 Wind Turbine 2 Wind Turbine | 6 63 | 7.27 3
3.13 3 | -1.45 1
-0.75 1 | 18
18 | 3 | 3 | | 571 291024.7 962795
572 291035.2 962794 | 4.8 4
4.7 4 | 0.4 1 R
0.5 1 G | 1.5
1 | 6 | 2 Wind Turbine
1 Wind Turbine | 6 63 | 2.44 3
3.18 3 | 0.05 1
0.90 1 | 18
18 | 3 | 3 | | 573 291045.7 962795
574 290996.5 962743 | 4.7
6.7
4 | 0.4
0.1
1 G | 1 1 | 4 | 1 Wind Turbine 1 Minor Watercourse | 6 116 | 5.12 3
6.69 3 | 1.74 1
15.16 2 | 18
18 | 3 | 3 3 | | 575 290996.5 962755
576 290995.4 962764 | 6.9 4
6.5 4 | 0.2 1 G | 1 | 4 | 1 Wind Turbine 1 Wind Turbine | 6 97 | 6.93 3
7.95 3 | -2.80 1
-2.91 1 | 18
18 | 3 | 3 | | 577 290994.4 962774
578 290994.6 962784 | 5.9 4
5.5 4 | 0.6
0.7 2 R | 1.5
1.5 | 12
12 | 2 Wind Turbine 2 Wind Turbine | 6 79 | 8.82 3
9.49 3 | -2.96 1
-2.85 1 | 18
18 | 3 | 6 | | 579 290994.2 962805
580 290994.5 962815 | 4.7
4.5
4 | 1.5 3 G
1 2 R | 1
1.5 | 12
12 | 2 Wind Turbine
2 Wind Turbine | 6 53 | 1.58 3
3.40 3 | -2.71 1
-2.69 1 | 18
18 | 3 | 6 | | 581 290995.0 962824
582 290994.7 962834 | 4.5
4.2
4 | 1.2
0.5
1
G | 1.5 | 18
4 | 3 Wind Turbine 1 Wind Turbine | 6 39 | 6.00 3
9.64 3 | -2.72 1
-2.82 1 | 18
18 | 3 | 3 | | 583 290994.8 962844
584 291416.1 963174 | 3.2
3.6
2 | 0.3 1 G | 1 1.5 | 3 | 1 Wind Turbine 1 Wind Turbine | 6 52 | 4.84 3
2.58 3 | -2.80 1
0.85 1 | 18
18 | 3 | 3 | | 585 291414.8 963184
586 291415.9 963194 | 3.4 2
3.3 2 | 0.4 1 R
0.2 1 G | 1.5 | 2 | 1 Wind Turbine 1 Wind Turbine | 6 32 | 2.02 3
2.03 3 | 0.77 1
0.52 1 | 18
18 | 3 | 3 | | 587 291414.4 963204
588 291415.0 963214
589 291414.7 963224 | 3.5 2
3.8 2
3.9 2 | 0.4 1 G
0.4 1 G | 1 | 2 2 2 | 1 Wind Turbine 1 Wind Turbine 1 Wind Turbine | 6 12 | 2.08 3
2.27 3
4.20 4 | 0.42 1
0.11 1
-0.16 1 | 18
18
24 | 3 3 | 3 | | 589 291414.7 963224
590 291410.7 963226
591 291405.0 963224 | 3.9 2
3.9 2
3.9 2 | 0.2 1 G
0.2 1 R
0.4 1 R | 1.5
1.5 | 3 | 1 Wind Turbine 1 Wind Turbine 1 Wind Turbine | 6 0 | 4.20 4
0.33 4
6.22 4 | 0.02 1
0.41 1 | 24
24
24 | 3 | 3 | | 592 291394.9 963225 | 3.5 2 | 0.2 1 R | 1.5 | 3 | 1 Wind Turbine | 6 16 | 6.17 3 | 1.00 1 | 18 | 3 | 3 | | | | | | | | | | | | | | | 593 291385.3 963225 3.0 2
594 291375.0 963224 4.8 4
595 291365.1 963225 4.8 4
596 291414.6 963274 3.1 2 | 0.2 1 G
0.3 1 G
0.2 1 R
0.4 1 R | 1 2 1 4 1.5 6 1.5 3 | 1 Wind Turbine 1 Wind Turbine 2 Wind Turbine 1 Wind Turbine | 6 25.72 3 6 36.02 3 6 45.97 3 6 47.95 3 | 1.13 1
0.33 1
-0.47 1
-0.52 1 | 18 3 3 18 3 18 3 3 18 3 3 3 3 3 3 3 3 3 | |--|--|--|--|---|--|--| | 597 291415.3 963264 2.1 2 598 291414.9 963255 2.1 2 599 291415.3 963245 2.2 2 600 291414.9 9632345 3.5 2 601 291414.9 963234 3.5 2 601 291424.6 963225 3.7 2 | 0.5 1 6
0.7 2 6
0.4 1 6
0.5 1 6
0.4 1 6 | 1 2 1 4 1 2 1 1 2 1 1 2 1 1 2 1 | 1 Wind Turbine | 6 38.57 3 6 28.95 3 6 19.89 3 6 9.27 4 6 13.70 3 | -0.58 1
-0.61 1
-0.66 1
-0.51 1
-0.78 1 | 18 3 3 3 18 3 3 18 3 3 3 18 3 3 3 3 3 3 | | 602 291435.4 963224 2.4 2 603 291444.7 963225 2.2 2 604 291454.5 963225 2.5 2 605 291464.8 963223 2.7 2 606 291944.8 963223 1.8 1 | 0.5 1 6 6 1 1 2 R 1 2 G 0.9 2 G | 1 2 1 4 1.5 6 1 4 1 2 | 1 Wind Turbine 1 Wind Turbine 2 Wind Turbine 1 Important Habitat 1 Wind Turbine | 6 24.54 3 6 33.74 3 6 43.56 3 8 42.87 3 6 98.38 3 | -1.29 1
-1.59 1
-1.89 1
0.53 1
-2.64 1 | 118 3 3 3 18 18 3 6 24 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | | 607 291955.4 962984 1.8 1 1 608 291965.1 962984 1.8 1 1 609 291974.7 962984 1.7 1 1 610 291984.7 962984 1.3 1 611 291992.8 962988 1.1 1 1 | 0.7 2 6 G G G G G G G G G G G G G G G G G G | 1 2
1 2
1 1 1
1 2 | 1 Wind Turbine | 6 93.85 3 6 90.82 3 6 88.75 3 6 86.47 3 6 90.04 3 | -2.66 1
-2.69 1
-2.67 1
-2.65 1
-2.79 1 | 18 3 3 3 18 3 18 3 3 18 3 3 18 3 3 3 3 3 | | 612 291994.9 962984 1.1 1 1 613 292005.0 962984 1.4 1 614 292014.8 962984 1.7 1 615 292025.1 962984 1.9 1 | 1 2 G
0.9 2 G
0.9 2 G
0.9 2 G
0.4 1 G | 1 2 1 2 1 1 2 1 1 1 1 | 1 Wind Turbine
1 Wind Turbine
1 Important Habitat
1 Important Habitat | 6 86.30 3
6 87.11 3
8 82.62 3
8 77.54 3 | -2.74 1
-2.85 1
3.83 1
3.59 1 | 18 3 3 3 2 4 2 4 3 3 3 3 3 3 3 3 3 3 3 3 3 | | 616 292034.6 962984 2.2 2 617 291995.4 963034 1.9 1 618 291994.5 963025 1.9 1 619 291995.6 963015 1.9 1 620 291994.9 963004 1.7 1 | US 1 G G G G G G G G G G G G G G G G G G | 1 2
1 2
1 2
1 2
1 1 2 | 1 Important Habitat | 8 63.46 3
8 87.03 3
8 90.33 3
8 92.27 3
8 96.22 3 | 3.35 1
3.54 1
3.84 1
3.64 1
3.56 1 | 24 3 3 3 2 4 2 4 3 3 3 2 4 2 4 3 3 3 3 3 | | 621 291994.8 962995 1.3 1
622 291995.4 962974 1.2 1
623 291994.9 962965 1.6 1
624 291994.9 962965 1.6 1
625 291995.1 962944 1.6 1 | 0.8 2 R 0.4 1 R 0.5 1 R 0.6 2 R 0.7 2 G | 1.5 3
1.5 1.5 1.5
1.5 1.5 3
1 2 | 1 Wind Turbine | 6 97.43 3 6 75.86 3 6 66.62 3 6 56.48 3 6 45.60 3 | -2.93 1
-2.58 1
-2.36 1
-2.10 1
-1.82 1 | 118 3 3 3 18 18 3 3 18 3 3 18 3 3 3 18 3 3 3 3 | | 626 291995.3 962935 1.6 1
627 292125.1 962615 3.2 2
628 292135.1 962614 3.3 2
629 292145.3 962614 3.3 2
630 292155.4 962614 3.1 2 | 0.6 2 G
0.4 1 R
0.8 2 G
0.8 2 R
1.2 3 G | 1 2 1.5 3 1 4 4 1.5 6 1 6 6 | 1 Wind Turbine 1 Wind Turbine 1 Wind Turbine 2 Wind Turbine 2 Wind Turbine | 6 36.84 3
6 116.46 3
6 107.05 3
6 97.03 3
6 87.43 3 | -1.59 1
1.40 1
1.35 1
1.35 1 | 18 3 3
18 3 3
18 3 6
18 3 6 | | 631 292164.5 962614 2.9 2
632 292175.4 962614 2.9 2
633 292183.9 962615 2.8 2
634 292194.4 962616 2.8 2
635 292205.3 962615 2.8 2 | 12 3 6
12 3 6
13 3 6
0.9 2 R
0.5 1 6 | 1 6 1 6 1.5 6 1 2 | 2 Wind Turbine 2 Wind Turbine 2 Wind Turbine 2 Wind Turbine 1 Wind Turbine | 6 78.84 3 6 69.01 3 6 60.89 3 6 51.46 3 6 43.34 3 | 1.38 1
1.41 1
1.36 1
1.34 1
1.39 1 | 18 3 6
18 3 6
18 3 6
18 3 6 | | 636 292215.0 962614 2.8 2
637 29224.8 962614 2.8 2
638 292234.9 962614 2.8 2
639 292185.0 962664 4.3 4
640 292184.5 962655 4.2 4 | 0.4 1 6
0.4 1 6
0.7 2 6
1.1 3 6
1.5 3 6 | 1 2
1 2
1 4
1 12
1 12 | 1 Wind Turbine 1 Wind Turbine 1 Wind Turbine 2 Wind Turbine 2 Wind Turbine | 6 36.71 3 6 31.90 3 6 29.20 3 6 57.19 3 6 54.73 3 | 1.41 1
1.43 1
1.43 1
-1.74 1
-1.01 1 | 18 3 3 3 18 3 3 18 3 3 18 3 3 18 3 3 18 3 3 6 6 18 3 6 6 6 | | 641 292185.1 962645 3.6 2 642 292185.4 962635 3.5 2 643 292184.9 962625 3.1 2 644 292185.1 962604 2.8 2 645 292184.4 962595 2.8 2 | 1.5 3 G
1.8 3 R
1.7 3 G
1.4 3 G | 1 6 1.5 9 1 6 1.5 9 | 2 Wind Turbine 4 Wind Turbine | 6 52.93 3 6 53.31 3 6 56.07 3 6 65.50 3 6 71.93 3 | -0.33 1
0.29 1
0.86 1
1.89 1
2.35 1 | 18 3 6
18 3 6
18 3 6
18 3 6
18 3 6 | | 646 292184.7 962584 2.8 2 647 292185.2 962575 2.8 2 648 292184.3 962565 2.9 2 649 293705.4 962485 1.3 1 650 293715.5 962488 1.2 1 | 12 3 6 G 1 2 G G 1 2 1 2 G G 2 1 3 R 2 3 G G | 1 6
1 4
1 4
1.5 4.5
1 3 | 2 Wind Turbine 1 Wind Turbine 1 Wind Turbine 1 Important Habitat 1 Important Habitat | 6 79.47 3
6 86.32 3
6 94.77 3
8 1.79 4
8 0.54 4 | 2.89 1
3.36 1
3.84 1
-0.03 1
-0.01 1 | 18 3 6 3 3 18 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | | 651 291695.2 962485 1.3 1
652
291685.5 962485 1.3 1
653 291675.3 962485 2.1 2
654 291670.0 962487 2.2 2
655 291655.5 962484 4.2 4 | 1.4 3 R
0.6 2 G
0.5 1 G
0.4 1 G
0.5 1 G | 1.5 4.5
1 2
1 2
1 2
1 4 | 1 Important Habitat | 8 1.79 4
8 1.71 4
8 1.49 4
8 1.11 4
8 3.57 4 | -0.02 1
-0.03 1
-0.02 1
0.03 1
0.23 1 | 32 5 5 5 5 32 5 5 5 5 5 5 5 5 5 5 5 5 5 | | 656 291655.1 962484 4.6
657 291645.4 962485 4.4
658 291634.9 962485 4.2
659 291625.0 962485 4.2
660 291664.5 962534 4.3
4.660 291664.5 962534 2.2 | 03 1 6
0.5 1 R
0.6 2 G
0.4 1 R
1 2 G | 1 4 1.5 6 1 8 1.5 6 1 4 | 1 Important Habitat 2 Important Habitat 2 Wind Turbine 2 Wind Turbine 1 Important Habitat | 8 10.07 3
8 16.57 3
6 23.02 3
6 23.47 3
8 1.44 4 | 0.64 1
1.04 1
-1.95 1
-1.97 1
-0.05 1 | 24 3 3 6 18 3 6 18 3 6 32 5 5 5 | | 661 291665.6 962524 2.6 662 291665.3 962515 1.3 1 663 291665.5 962505 1.3 1 664 291664.9 962405 1.4 1 665 291664.2 9624075 6.0 4 | 2 3 G
1.4 3 R
0.8 2 G
0.8 2 G
0.3 1 R | 1 6 4.5 1 2 1.5 6 | 2 Important Habitat 1 Important Habitat 1 Important Habitat 1 Important Habitat 1 Important Habitat 2 Important Habitat | 8 127 4
8 148 4
8 146 4
8 155 4
8 1357 3 | -0.07 1
-0.03 1
-0.03 1
-0.03 1
1.14 1 | 32 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 | | 666 291665.1 962465 6.2 4 667 291665.1 962455 6.3 4 668 291664.8 962444 6.3 4 669 291664.7 962435 6.3 4 670 291755.6 962165 5.6 4 | 0.4 1 G 0.5 1 G 0.3 1 R 0.2 1 R 0.5 1 G | 1 4 1 1.5 6 1.5 6 1 4 | 1 Important Habitat 1 Important Habitat 2 Important Habitat 2 Wind Turbine 1 Wind Turbine | 8 20.07 3
8 27.19 3
8 35.15 3
6 43.51 3
6 95.81 3 | 2.01 1
2.84 1
3.74 1
1.42 1
5.19 1 | 24 3 3 3 24 24 3 6 6 18 3 6 6 18 3 3 3 | | 671 291754.7 962154 4.6 4 672 291755.1 962144 3.9 2 673 291754.7 962135 3.8 2 674 291754.2 962124 3.7 2 675 291755.1 962118 3.6 2 | 0.8 2 G
1.2 3 G
1.8 3 R
1.4 3 G
1.7 3 R | 1 8 6 1.5 9 1 5 9 1.5 9 9 | 2 Wind Turbine | 6 84.99 3 6 75.79 3 6 66.88 3 6 57.18 3 6 52.44 3 | -4.60 1
-4.52 1
-4.29 1
-3.89 1
-3.70 1 | 18 3 6
18 3 6
18 3 6
18 3 6
18 3 6 | | 676 291755.3 962114 3.7 2
677 291755.2 962104 4.5 4
678 291755.1 962095 5.0 4
679 291754.9 962095 5.0 4
680 291755.0 962075 5.0 4 | 111 3 R
1 2 G
0.7 2 R
0.6 2 G
1 2 G | 1.5 9
1 8
1.5 12
1 8
1 8 | 2 Wind Turbine | 6 49.25 3 6 41.38 3 6 34.92 3 6 29.79 3 6 28.00 3 | -3.55 1
-3.04 1
-2.32 1
-1.52 1
-0.79 1 | 118 3 6
118 3 6
118 3 6
118 3 6 | | 681 291704.9 962114 3.5 2 682 291744.7 962115 2.0 2 683 291724.6 962114 2.9 2 684 291732.0 962114 3.7 2 685 291744.7 962114 3.7 2 | 0.9 2 G
1 2 G
0.5 1 G
0.8 2 G
0.8 2 G | 1 4 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 Wind Turbine | 6 45.88 3 6 42.51 3 6 40.38 3 6 41.11 3 6 44.14 3 | -1.24 1
-1.56 1
-1.94 1
-2.52 1
-3.03 1 | 118 3 3 3 18 18 3 3 18 3 3 18 3 3 18 3 3 3 3 | | 686 291764.8 962115 4.0 2 687 291775.2 962114 6.2 688 291785.4 962115 6.6 689 291794.3 962115 6.6 690 291804.9 962114 6.6 4 | 1.4 3 G 0.5 1 R 1.1 3 R 0.4 1 R 1 2 R | 1 6 6 1.5 6 1.5 18 1.5 6 1.5 12 | 2 Wind Turbine 2 Wind Turbine 3 Wind Turbine 2 Wind Turbine 2 Wind Turbine | 6 55.51 3 6 6.2.83 3 6 71.11 3 6 78.54 3 6 87.80 3 | -4.04 1
-4.83 1
-5.91 1
-6.83 1
-7.94 1 | 118 3 6
118 3 9
118 3 9
119 3 6 | | 691 291455.1 962754 14.2 6
692 291454.8 962764 14.1 6
693 291454.5 962775 13.0 6
694 291455.3 962785 11.9 6
695 291455.1 962794 10.0 6 | 0.4 1 R 0.2 1 R 0.4 1 R 0.2 1 G 0.5 1 G | 1.5 9
1.5 9
1.5 9
1 6
1 6 | 2 Minor Watercourse | 6 20.79 3 6 24.59 3 6 27.13 3 6 32.24 3 6 36.64 3 | 4.46 1
5.57 1
6.16 1
7.27 1
7.61 1 | 118 3 6
118 3 6
128 3 6
128 3 6 | | 696 291458.0 962797 8.0 FALSE
697 291454.9 962804 7.9 4
698 291455.8 962814 6.2 4
699 291455.3 962825 4.4 4
700 291456.2 962835 3.6 2 | 0.3 1 G 0.5 1 G 1 2 R 1.1 3 G 1.5 3 G | 1 0 4 15 12 12 1 16 6 | 1 Minor Watercourse 1 Minor Watercourse 2 Minor Watercourse 2 Minor Watercourse 4 Minor Watercourse | 6 40.21 3 6 40.60 3 6 45.82 3 5 14.43 3 6 58.29 3 | 8.05 1
7.47 1
7.12 1
7.04 1
7.24 1 | 118 3 3 3 18 18 3 6 6 18 3 6 6 18 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | 701 291455.6 96:2495 3.4 2 702 291505.6 96:2794 4.5 4 703 291493.6 96:2794 7.0 4 705 291475.0 96:2794 7.0 4 705 291475.0 96:2794 7.0 705 291455.0 96:2795 7.2 | 25 3 K 0.4 1 R 0.3 1 R 0.1 1 R 0.2 1 G 0.2 1 G | 1.5 9
1.5 6
1.5 6
1.5 6 | 2 Minor Watercourse 2 Wind Turbine 2 Wind Turbine 2 Wind Turbine 1 Minor Watercourse 1 Minor Watercourse | 6 6497 3
6 43.71 3
6 51.21 3
6 57.78 3
6 54.04 3
6 45.43 3 | 7.61 1 -1.08 1 -2.21 1 -3.27 1 9.86 1 8.66 1 | 18 3 6
18 3 6
18 3 6
18 3 6
18 3 3 | | 707 291445.1 962794 11.4 6 708 291436.0 962794 10.2 6 709 291425.7 962794 11.5 6 710 291414.9 962794 9.8 6 | 0.2 1 G 0.5 1 R 0.4 1 R 0.4 1 G 1.2 3 G | 1 4 1.5 9 1.5 9 1.5 1 6 1 1 18 | 2 Minor Watercourse 2 Minor Watercourse 2 Minor Watercourse 3 Minor Watercourse | 6 45.43 3 6 27.31 3 6 19.14 3 6 10.51 3 6 10.02 4 5.55 4 | 8.56 1
5.57 1
3.82 1
2.05 1
0.08 1
0.07 1 | 18 3 6
18 3 6
18 3 6
18 3 6
24 3 9
24 3 6 | | 711 291404.8 962794 2.9 712 290724.9 961904 10.8 6 713 290735.2 961904 11.5 6 714 290744.5 961904 10.3 6 715 290755.1 961905 11.0 6 716 290764.8 961905 8.9 6 | 2.4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 6 1.5 9 1 1.5 9 1 6 | 2 Minor Watercourse 2 Tracks or Paths Important Habitat | 2 15.70 3 4 2 6.24 4 2 2 15.19 3 8 10.52 3 | 0.07 1
-2.14 1
-0.25 1
1.12 1
-0.04 1
1.08 1 | 24 5 2 4 8 2 4 4 6 5 1 2 2 4 6 6 1 2 2 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | 716 29078-1.8 951905 | 0.4 1 0
0.2 1 R
0.4 1 G
0.3 1 G
0.4 1 G
0.2 1 G | 15 6 1 4 1 1 4 1 1 4 1 1 4 | 2 Important radiatat 2 Important Habitat 1 Important Habitat | 8 2.31 4 8 1.37 4 8 5.33 4 8 5.99 4 8 5.15 4 | -1.00 1
-0.04 1
-0.03 1
-0.50 1
-0.63 1
-0.60 1 | 24 5 10 5 10 5 22 5 5 5 5 22 5 5 5 5 5 5 5 5 5 5 5 | | 722 290775.1 961865 6.3 4 723 290775.2 961855 4.5 4 724 290774.9 961914 5.4 4 725 290775.2 961924 5.7 4 726 290775.1 961935 6.0 4 | 0.4 1 R 0.6 2 G 0.3 1 G 0.2 1 G 0.3 1 G | 1.5 6 1 8 1 4 1 4 1 4 4 | 2 Important Habitat 2 Important Habitat 1 Important Habitat 1 Important Habitat 1 Important Habitat 1 Important Habitat | 8 6.04 4 8 10.24 3 8 0.99 4 8 0.94 4 8 1.56 4 | -0.41 1
-0.58 1
-0.06 1
-0.03 1
-0.07 1 | 32 5 10 6 32 5 5 5 5 32 5 5 5 5 5 5 5 5 5 5 5 5 5 | | 727 290775.3 961944 6.0 4 728 290774.7 961954 5.9 729 290785.0 961904 4.0 4 730 290785.1 961905 4.8 731 290805.0 961904 4.6 4.6 | 0.4 1 R 0.4 1 G | 1.5 6
1 4
1 4
1 4
1 4 | 2 Important Habitat 1 Important Habitat 1 Important Habitat 1 Important Habitat 1 Important Habitat | 8 1.21 4
8 1.33 4
8 1.29 4
8 1.74 4
8 1.33 4 | -0.03 1
-0.10 1
-0.03 1
-0.08 1
-0.10 1 | 32 5 10
32 5 5
32 5 5
32 5 5 5
32 5 5 5 | | 732 290815.5 961904 4.0 2 733 290824.5 961905 3.5 2 734 291175.3 961765 16.6 8 735 291185.0 961765 5.5 4 736 291195.3 961765 3.1 2 | 04 1 6 02 1 6 05 1 6 05 1 6 05 1 6 | 1 2 2 1 8 1 4 1 2 2 | 1 Important Habitat 1 Important Habitat 2 Important Habitat 1 Important Habitat Important Habitat Important Habitat | 8 1.12 4
8 1.75 4
8 5.33 4
8 1.94 4
8 1.73 4 | -0.08 1
-0.06 1
-1.35 1
0.02 1
0.02 1 | 32 5 5 5 5 32 5 5 5 5 5 5 5 5 5 5 5 5 5 | | 737 291205.3 961765 3.1 2 738 291215.4 961764 3.4 2 739 291224.9 961764 3.8 2 740 291228.1 961765 4.1 4 741 291225.1 961774 3.3 2 | 0.7 2 G
1 2 G
1.1 3 G
1 2 G
0.5 1 G | 1 4 1 4 1 6 1 8 1 2 | 1 important Habitat 1 important Habitat 2 important Habitat 2 important Habitat 1 important Habitat | 8 1.81 4 8 0.78 4 1.09 4 8 1.09 4 8 0.87 4 | 0.02 1 0.01 1 -0.04 1 -0.21 1 0.00 1 | 32 5 5 5 32 32 5 5 5 32 32 5 10 32 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | 742 291224.8 961784
743 291224.6 961794 | 3.4 2
3.4 2 | 0.3 1 | G | 1 | 2 | 1 | Important Habitat
Important Habitat | 8 | 1.02 4
1.06 4 | -0.02
-0.03 | 1 | 32
32 | 5 | 5 | |---|----------------------------------|-----------------------------|-------------|-----------------|-----------------|-------------|--|-------------|--------------------------------------|----------------------------------|-------------|----------------------|-------------|---------------| | 744 291224.4 961805
745 291224.7 961814 | 3.4 2
3.4 2
3.4 2
4.3 4 | 1.5 3
2.5 3 | G
G | 1 1 | 6
6 | 1
2
2 | Important Habitat
Important Habitat
Important Habitat
Important Habitat | 8
8
8 | 1.05 4
1.65 4
1.42 4
0.88 4 | -0.03
-0.04
-0.02
-0.05 | 1 1 1 | 32
32
32
32 | 5 5 | 10 | | 746 291224.8 961754
747 291225.0 961744
748 291225.2 961734 | 4.3
3.9 2 | 0.4
0.3
1 | G
G | 1
1
1 | 4
4
2 | 1
1
1 | Important Habitat
Important Habitat | 8
8
8 | 1.33 4
1.26 4 | -0.05
-0.03 | 1
1
1 | 32
32 | 5
5
5 | 5
5
5 | | 749 291225.7 961725
750 291224.4 961714
751 291234.4 961764 | 4.6 4
5.3 4
5.1 4 | 0.3
0.1
1
2 | G
G | 1
1
1 | 4
4
8 | 1
1
2 | Important Habitat
Important Habitat
Important Habitat | 8
8
8 | 1.53 4
1.31 4
1.51 4 | 0.11
-0.01
-0.12 | 1
1
1 | 32
32
32 | 5
5
5 | 5
5
10 | | 752 291244.7 961764
753 291254.5 961764 | 3.9
2.8
2 | 0.3
0.5
1 | G
G | 1 | 2 2 | 1
1 | Important Habitat
Important Habitat | 8 8 | 1.34 4
1.31 4 | -0.05
-0.06 | 1 1 | 32
32 | 5
5 | 5
5 | | 754 291265.0 961765
755 291275.4 961765
756 291615.3 961654 | 2.7 2
2.5 2
9.2 6 | 1 2
1.4 3
0.3 1 | G
G
R | 1
1
1.5 |
4
6
9 | 1
2
2 | Important Habitat
Important Habitat
Wind Turbine | 8
8
6 | 1.85 4
1.47 4
17.43 3 | -0.06
-0.03
-0.47 | 1
1
1 | 32
32
18 | 5
5
3 | 5
10
6 | | 757 291624.7 961654
758 291635.4 961654
759 291645.0 961654 | 9.5 6
8.2 6
7.7 4 | 0.3 1
0.4 1
0.6 2 | G | 1
1 | 6 | 2 2 | Wind Turbine
Wind Turbine | 6 | 22.32 3
30.57 3
31.36 3 | 1.09
2.79 | 1 | 18
18 | 3 | 6 | | 760 291654.8 961655
761 291665.1 961655 | 6.9
4.3
4 | 0.6 2
0.5 1 | G
G | 1.5
1
1 | 8
4 | 2
1 | Important Habitat
Important Habitat
Important Habitat | 8 | 34.97 3
25.16 3 | 3.75
5.05
-0.42 | 1 1 | 24
24
24 | 3 | 6 3 | | 762 291670.0 961659
763 291675.3 961655
764 291684.6 961654 | 3.4 2
3.0 2
1.9 1 | 1 2
0.8 2
1.8 3 | G | 1
1 | 4
4
3 | 1
1 | Important Habitat
Important Habitat
Important Habitat | 8
8
8 | 20.26 3
15.04 3
5.74 4 | -0.41
0.13
0.27 | 1 1 1 | 24
24
32 | 3 3 5 | 3 3 | | 765 291695.3 961654
766 291705.3 961654 | 1.8 1
1.9 1 | 2
5
8 | G | 1 | 3 8 | 1 2 | Important Habitat
Important Habitat | 8 8 | 1.32 4
1.29 4 | 0.03
0.03 | 1 | 32
32 | 5 | 5
10 | | 767 291715.1 961654
768 291665.0 961604
769 291665.1 961614 | 1.8 1
4.3 4
6.9 4 | 1.8 3
1 2
0.5 1 | G
R
G | 1
1.5
1 | 3
12
4 | 1
2
1 | Important Habitat
Important Habitat
Important Habitat | 8
8
8 | 1.09 4
1.00 4
1.29 4 | 0.02
0.01
0.08 | 1
1
1 | 32
32
32 | 5
5
5 | 5
10
5 | | 770 291665.6 961625
771 291664.6 961634
772 291664.9 961644 | 10.9 6
9.2 6
8.0 4 | 0.5 1
0.3 1 | G
G | 1 1 | 6
6 | 2 2 | Important Habitat
Important Habitat
Important Habitat | 8 8 | 11.62 3
21.32 3
25.31 3 | 1.50
2.58
-0.68 | 1 1 | 24
24
24 | 3 | 6
6
3 | | 773 291665.8 961665
774 291665.0 961674 | 3.8 2
3.7 2 | 1.4 3
1.5 3 | G
G | 1 1 | 6
6 | 2 2 | Important Habitat
Important Habitat | 8 | 24.47 3
25.93 3 | -0.93
-1.19 | 1 1 | 24
24
24 | 3 | 6 | | 775 291664.6 961684
776 291665.2 961695
777 291665.3 961704 | 2.9 2
3.0 2
4.5 4 | 1.5 3
1.5 3
0.4 1 | R
G
R | 1.5
1
1.5 | 9
6
6 | 2
2
2 | Important Habitat
Important Habitat
Important Habitat | 8
8
8 | 30.24 3
32.13 3
36.73 3 | -1.25
-1.25
-1.02 | 1
1
1 | 24
24
24 | 3
3
3 | 6
6
6 | | 778 291225.3 962174
779 291224.9 962184 | 7.6 4
7.4 4 | 0.2 1
0.2 1 | G
G | 1 | 4 | 1 | Wind Turbine
Wind Turbine | 6 | 29.14 3
21.33 3 | -3.23
-2.45 | 1 1 | 18
18 | 3 | 3 | | 780 291225.1 962194
781 291225.5 962204
782 291225.0 962214 | 7.1 4
6.7 4
6.1 4 | 0.1
0.3
1
0.4 | G
G | 1
1
1 | 4
4
4 | 1
1
1 | Wind Turbine
Wind Turbine
Wind Turbine | 6
6 | 15.01 3
14.25 3
20.16 3 | -1.63
-0.81
-0.47 | 1
1
1 | 18
18
18 | 3
3
3 | 3
3
3 | | 783 291223.8 962220
784 291225.1 962224
785 291225.4 962234 | 7.0 4
6.7 4
5.9 4 | 0.3 1
0.2 1
0.8 2 | R
G | 1.5
1 | 6
4
8 | 2
1
2 | Wind Turbine
Important Habitat
Important Habitat | 6
8
8 | 25.18 3
25.76 3
29.51 3 | -0.71
-1.74
-1.78 | | 18
24
24 | 3
3
3 | 6 3 | | 786 291225.0 962244
787 291225.6 962254 | 5.1 4
5.7 4 | 0.9
0.4
1 | G
R | 1
1
1.5 | 8 | 2 2 | Important Habitat
Important Habitat | 8 8 | 34.28 3
39.53 3 | -1.90
-1.71 | 1 | 24
24 | 3 | 6 | | 788 291225.4 962264
789 291275.1 962224
790 291265.0 962225 | 6.1 4
4.0 FALSE
3.2 2 | 0.3
0.8
2
0.6
2 | G
G
R | 1
1
1.5 | 4
0
6 | 1
1
2 | Important Habitat
Important Habitat
Important Habitat | 8
8
8 | 39.85 3
0.99 4
1.49 4 | -2.41
0.03
-0.02 | 1
1
1 | 24
32
32 | 3
5
5 | 3
5
10 | | 791 291254.7 962224
792 291245.1 962224
793 291235.0 962225 | 2.5 2
2.7 2
3.9 2 | 0.5 1
0.2 1
0.2 1 | G | 1
1 | 2
2
2 | 1 1 1 | Important Habitat
Important Habitat
Important Habitat | 8
8
8 | 1.26 4
8.16 4
16.54 3 | -0.04
-0.34
-0.86 | 1
1 | 32
32
32
24 | 5
5 | 5
5
5 | | 794 291215.1 962224
795 291205.1 962225 | 7.8 4
8.0 4 | 0.3
0.4
1 | G
G | 1 1 | 4 4 | 1 1 | Wind Turbine
Wind Turbine | 6 | 33.89 3
42.03 3 | -1.96
-3.33 | 1 1 | 18
18 | 3 3 | 3
3
3 | | 796 291195.3 962225
797 291185.2 962225
798 291175.1 962224 | 8.2 6
6.9 4
6.0 4 | 0.5
0.9
2
0.7
2 | G
G
G | 1
1
1 | 6
8
8 | 2
2
2 | Wind Turbine
Wind Turbine
Wind Turbine | 6
6 | 50.36 3
59.18 3
68.38 3 | -4.75
-6.14
-7.06 | 1
1
1 | 18
18
18 | 3
3
3 | 6
6
6 | | 799 290925.4 962365
800 290915.0 962365
801 290905.1 962365 | 1.2 1
1.1 1
1.2 1 | 0.9 2
1.3 3
1.8 3 | G
R | 1
1.5 | 2
4.5
3 | 1 | Important Habitat
Important Habitat
Important Habitat | 8 8 | 1.43 4
1.60 4
2.01 4 | 0.02
0.02
0.02 | 1 1 | 32
32
32
32 | 5
5 | 5
5 | | 802 290895.5 962365
803 290885.2 962364 | 1.2
1.3
1 | 2 3 3 | 6 | 1 1 1 | 3
3 | 1 | Important Habitat
Important Habitat | 8 | 1.51 4
1.33 4 | 0.02
0.02 | 1 1 | 32
32 | 5 | 5 5 | | 804 290874.9 962365
805 290865.3 962365
806 290855.6 962364 | 1.3 1
1.3 1
1.3 1 | 0.9 2
2 3 | G
G | 1
1
1.5 | 2
3
45 | 1
1 | Important Habitat
Important Habitat
Important Habitat | 8
8
8 | 1.91 4
8.16 4
11.93 3 | 0.03
0.19
0.38 | 1
1 | 32
32
24 | 5
5
3 | 5
5
3 | | 807 290845.3 962365
808 290835.3 962364 | 1.8 1
1.9 1 | 2.6 3
2.4 3 | G
G | 1 1 | 3
3 | 1 1 | Important Habitat
Important Habitat | 8 8 | 16.54 3
16.20 3 | -0.02
-0.38 | 1 1 | 24
24 | 3 3 | 3 3 | | 809 290825.4 962365
810 290875.6 962414
811 290874.9 962404 | 2.8 2
0.6 1
0.6 1 | 1 2
1.1 3
0.7 2 | G
G
R | 1
1
1.5 | 4
3
3 | 1
1
1 | Important Habitat
Important Habitat
Important Habitat | 8
8
8 | 17.11 3
1.08 4
1.31 4 | -0.49
-0.01
-0.01 | 1
1
1 | 24
32
32 | 3
5
5 | 3
5
5 | | 812 290875.1 962394
813 290874.3 962385 | 0.6 1
0.6 1 | 0.3 1
0.1 1 | G
G | 1 | 1 1 | 1 | Important Habitat
Important Habitat | 8 | 1.39 4
6.31 4 | -0.01
-0.03 | 1 | 32
32 | 5 | 5 | | 814 290874.7 962375
815 290874.7 962354
816 290875.0 962345 | 1.6 1
1.6 1 | 0.2 1
2 3
2.6 3 | R
G | 1
1.5
1 | 4.5
3 | 1
1
1 | Important Habitat
Important Habitat
Important Habitat | 8
8
8 | 1.66 4
1.45 4
1.71 4 | -0.04
0.02
0.03 | 1
1
1 | 32
32
32 | 5
5
5 | 5 5 | | 817 290875.0 962334
818 290874.4 962325
819 290875.5 962315 | 1.4
1.3
1.0 | 2 3
1.6 3
2.4 3 | G
G | 1
1
1 | 3
3
3 | 1
1 | Important Habitat
Important Habitat
Important Habitat | 8
8
8 | 1.42 4
1.84 4
2.01 4 | 0.02
-0.04
-0.02 | 1
1
1 | 32
32
32 | 5
5
5 | 5
5 | | 820 291290.7 961742
821 291290.3 961752 | 3.2
3.2
2 | 0.5
0.8
1 | G
G | 1 1 | 2
4 | 1
1 | Important Habitat
Important Habitat | 8 8 | 1.32 4
1.06 4 | 0.04
0.02 | 1 1 | 32
32 | 5
5 | 5
5 | | 822 291289.2 961762
823 291289.7 961772
824 291289.9 961782 | 2.9 2
2.2 2
2.0 1 | 1.3 3
1.6 3
1.2 3 | G
G
R | 1
1
1.5 | 6
6
4.5 | 2
2
1 | Important Habitat
Important Habitat
Important Habitat | 8
8
8 | 1.37 4
1.45 4
3.75 4 | -0.05
0.01
-0.08 | 1
1
1 | 32
32
32 | 5
5
5 | 10
10
5 | | 825 291287.6 961791
826 291300.6 961792
827 291310.3 961792 | 2.0 1
1.9 1
1.9 1 | 1.4 3
2.1 3
2.2 3 | G
R | 1
1.5
1.5 | 3
4.5
4.5 | 1 | Minor Watercourse Minor Watercourse Minor Watercourse | 6 | 3.45 4
8.76 4
13.30 3 | 0.03
-0.15
0.14 | 1
1 | 24
24
18 | 3 | 3
3
3 | | 828 291319.6 961792
829 291329.7 961791 | 1.8
2.3
1 | 2.4
2.3
3 | G
G | 1 1 | 3
6 | 1 2 | Minor Watercourse
Minor Watercourse | 6 | 16.48 3
18.92 3 | 0.09
-0.02 | 1 1 | 18
18 | 3 | 3 6 | | 830 291340.0 961792
831 291290.1 961842
832 291289.7 961833 | 2.5
2.4
2.1
2 | 1.8 3
0.4 1
1 2 | G
G | 1
1
1 | 6
2
4 | 2
1
1 | Minor Watercourse
Important Habitat
Important Habitat | 6
8
8 | 24.02 3
1.08 4
0.53 4 | 0.41
-0.05
-0.02 | 1
1
1 | 18
32
32 | 3
5
5 | 6
5
5 | | 833 291289.7 961822
834 291290.0 961812
835 291289.5 961801 | 2.2 2
2.1 2
1.9 1 | 1.1 3
2.1 3
2.1 3 | G
R | 1
1.5
1.5 | 6
9
4.5 | 2 2 | Important Habitat
Important Habitat
Minor Watercourse | 8 | 6.42 4
16.34 3 | -0.13
-0.29
-0.09 | 1 1 | 32
24
18 | 5 | 10
6
3 | | 836 291279.4 961792
837 291269.7 961791 | 2.2
2.9 2 | 0.5 1
0.4 1 | R
G | 1.5
1.5
1 | 4.5
3
2 | 1
1 | Minor Watercourse
Minor Watercourse | 6 | 13.19 3
4.07 4
1.72 4 | -0.08
-0.02 | 1 1 | 24
24 | 3 3 | 3 3 | | 838 291260.0 961792
839 291249.0 961792
840 291240.0 961792 | 2.8 2
2.2 2
2.2 2 | 1 2
1.1 3
1.1 3 | G
G
R | 1
1
1.5 | 4
6
9 | 1
2
2 | Minor Watercourse
Minor Watercourse
Important Habitat | 6
6
8 | 1.43 4
1.40 4
1.45 4 | 0.00
-0.04
-0.02 | 1
1
1 | 24
24
32 | 3
3
5 | 3
6
10 | | 841 291273.2 961771
842 291312.0 961772 | 2.9 2
1.8 1
2.0 2 | 1.1
0.8
2.6
3 | R
G | 1.5
1 | 9 2 | 2
1 | Important Habitat
Important Habitat | 8 | 2.99 4
2.24 4 | 0.00
0.05 | 1 1 |
32
32
18 | 5 | 10
5 | | 843 291318.3 961802
844 291323.8 961818
845 291315.3 961854 | 2.1
3.0 2 | 2.8
1.1
3 | R
G | 1.5
1.5
1 | 9
6 | 2
2
2 | Minor Watercourse
Important Habitat
Important Habitat | 8 | 20.39 3
0.61 4 | 0.03
0.21
0.02 | 1 1 | 24
32 | 3 5 | 6 | | 846 291331.7 961857
847 291282.8 961861
848 291262.9 961853 | 3.4 2
3.6 2
2.8 2 | 0.3 1
2.1 3
0.8 2 | G
R | 1
1.5
1 | 2
9
4 | 1
2
1 | Important Habitat
Important Habitat
Important Habitat | 8
8
8 | 17.03 3
3.46 4
2.34 4 | 1.04
-0.16
-0.02 | 1
1
1 | 24
32
32 | 3
5
5 | 3
10
5 | | 849 291267.1 961821
850 291277.6 961882
851 291302.3 961890 | 3.2 2
2.9 2
2.2 2 | 0.4 1
1.1 3
0.2 1 | G
R | 1 1.5 | 2
9 | 1
2 | Important Habitat
Important Habitat
Important Habitat | 8 8 | 2.52 4
2.42 4
18.71 3 | -0.06
0.11
0.79 | 1 1 | 32
32
24 | 5 | 5
10
3 | | 852 291293.4 961929
853 291276.0 961929 | 1.9
1.9 | 1.6
2.1
3 | G
R | 1
1
1.5 | 3
4.5 | 1
1 | Important Habitat
Important Habitat | 8 | 49.80 3
41.56 3 | 0.22
0.85 | 1
1 | 24
24 | 3 3 | 3 3 | | 854 291628.8 961720
855 291631.0 961711
856 291630.7 961701 | 7.1 4
6.3 4
6.5 4 | 1.3 3
0.1 1
0.1 1 | R
G | 1.5
1
1 | 18
4
4 | 3
1
1 | Wind Turbine
Wind Turbine
Wind Turbine | 6
6 | 52.98 3
44.92 3
36.07 3 | 5.06
5.39
5.67 | | 18
18
18 | 3
3
3 | 9
3
3 | | 857 291628.8 961690
858 291632.0 961675 | 7.5 4
8.6 6 | 0.1
0.5
1 | G
G | 1 1 | 4 6 | 1 2 | Wind Turbine
Wind Turbine | 6 | 26.75 3
22.31 3 | 4.20
3.33 | 1 | 18
18 | 3 | 3 6 | | 859 291636.9 961661
860 291628.5 961639
861 291630.5 961627 | 8.6 6
10.1 6
7.2 4 | 0.4 1
0.2 1
0.3 1 | G
R | 1
1
1.5 | 6
6 | 2
2
2 | Wind Turbine
Important Habitat
Important Habitat | 8 | 28.72 3
17.16 3
6.12 4 | 3.16
0.76
-0.36 | 1
1
1 | 18
24
32 | 3
3
5 | 6
6
10 | | 862 291629.8 961618
863 291584.2 961671
864 291593.2 961671 | 5.3 4
6.9 4
7.0 4 | 0.5 1
0.5 1
0.3 1 | R
G
R | 1.5
1
1.5 | 6
4 | 2
1
2 | Important Habitat
Wind Turbine
Wind Turbine | 8
6
6 | 0.39 4
25.80 3
16.81 3 | -0.03
-3.07
-2.15 | 1
1 | 32
18
18 | 5
3
3 | 10
3
6 | | 865 291601.2 961671
866 291612.1 961670 | 8.1
9.3
6 | 0.4 1
0.2 1 | G
R | 1
1.5 | 6 | 2 2 | Wind Turbine
Wind Turbine | 6 | 8.84 4
2.59 4 | -1.24
0.19 | 1 | 24
24 | 3 | 6 | | 867 291621.3 961670
868 291642.5 961670
869 291652.9 961670 | 9.0 6
7.1 4
3.7 2 | 0.3
0.6
2
1 2 | R
G | 1
1.5
1 | 6
12
4 | 2
2
1 | Wind Turbine
Wind Turbine
Important Habitat | 6
6
8 | 11.33 3
32.53 3
37.38 3 | 1.55
4.29
-1.92 | | 18
18
24 | 3
3
3 | 6
6
3 | | 870 291625.0 961738
871 291610.5 961734 | 7.2
9.1
6 | 0.1 1
0.5 1 | G
G | 1 | 4
6 | 1 2 | Wind Turbine
Wind Turbine | 6 | 68.67 3
62.59 3 | 5.09
2.85 | 1 | 18
18 | 3 | 3 6 | | 872 291581.0 961802
873 291560.5 961794
874 291582.2 961736 | 8.0 4
8.8 6
7.7 4 | 0.4 1
0.5 1
0.4 1 | G
G | 1.5
1
1 | 6 | 2
1 | Wind Turbine
Important Habitat
Wind Turbine | 8 | 134.06 3
120.71 3
70.75 3 | 0.57
6.91
-0.91 | 1
1
1 | 18
24
18 | 3 3 | 6 6 3 | | 875 291569.9 961733
876 291760.7 962040
877 291758.4 962053 | 5.1 4
4.6 4
4.1 4 | 0.5
1
2
0.6
2 | G
R
R | 1
1.5
1.5 | 4
12
12 | 1
2
2 | Important Habitat
Wind Turbine
Wind Turbine | 8
6 | 70.99 3
48.12 3
37.90 3 | 7.03
1.19
0.41 | 1
1 | 24
18
18 | 3 3 | 3
6
6 | | 878 291756.8 962065
879 291774.3 962070 | 4.2
4.9
4 | 0.6
0.9 2 | G
G | 1
1 | 8
8 | 2 2 | Wind Turbine
Wind Turbine | 6 | 31.32 3
47.52 3 | -0.19
-1.31 | 1 1 | 18
18 | 3 3 | 6 | | 880 291734.8 962065
881 291717.1 962091
882 291730.9 962091 | 4.2 4
2.2 2
3.9 2 | 0.3 1
1.1 3
0.5 1 | R
G
G | 1.5
1
1 | 6
6
2 | 2
2
1 | Wind Turbine
Wind Turbine
Wind Turbine | 6
6 | 11.69 3
19.42 3
17.36 3 | 0.50
-1.16
-1.14 | 1
1
1 | 18
18
18 | 3
3
3 | 6
6
3 | | 883 291740.7 962093
884 291752.6 962095 | 4.9 4
4.9 4 | 0.5 1
0.7 2
0.6 2 | G
R | 1 1.5 | 4
12 | 1 2 | Wind Turbine
Wind Turbine | 6 | 23.57 3
33.00 3 | -1.65
-2.23 | 1 | 18
18 | 3 | 3 6 | | 885 291754.6 962088
886 291759.6 962092
887 291770.0 962092 | 5.0 4
5.2 4 | 0.8
0.9
2 | G
R | 1
1
1.5 | 8
8
12 | 2 2 | Wind Turbine
Wind Turbine
Wind Turbine | 6 | 31.09 3
37.12 3
46.53 3 | -1.80
-2.28
-2.87 | 1
1
1 | 18
18
18 | 3 3 | 6 | | 888 291779.9 962091
889 291790.6 962092
890 291801.2 962092 | 5.5 4
7.9 4
8.4 6 | 0.8 2
0.4 1
0.5 1 | G
G
G | 1
1
1 | 8
4
6 | 2
1
2 | Wind Turbine
Wind Turbine
Wind Turbine | 6
6 | 55.72 3
66.17 3
76.24 3 | -3.47
-4.34
-5.42 | 1
1
1 | 18
18
18 | 3
3
3 | 6
3
6 | | 302032 | - | - | | | | | | | | 5.42 | | | | | | 891 291767.5 962151
892 291724.6 962164 | 4.7 4 | 1.2
0.5 | 3 r | 1.5 | 18 | 3 | Wind Turbine
Wind Turbine | | 87.15 3
89.90 3 | -5.48 1
-2.57 1 | 18
18 | 3 9 | |--|-------------------------|-------------------|-------------|---------------|-----------------|--------|--|------|-------------------------------|-------------------------------|----------------|--------------| | 893 291710.8 962163
894 291719.8 962223 | 5.0 4 | 1 0.6 | 2 G | 1 | 8 | 2 | Wind Turbine Wind Turbine Major Watercourse | 6 9 | 00.22 3
12.10 3 | -1.55 1
16.79 2 | 18
24 | 3 6 3 | | 895 291743.9 962227 | 3.0 2 | 0.8 | 2 | 1.5 | 6 | 2 | Major Watercourse | 8 11 | 19.80 3 | 15.38 2 | 24 | 3 6 | | 896 291711.2 962342
897 291689.8 962334 | 6.9 4
6.1 4 | 0.3
0.3 | 1 R
1 G | 1.5
1 | 6
4 | 2
1 | Major Watercourse
Major Watercourse | | 11.11 3
33.68 3 | 11.33 2
14.13 2 | 24
24 | 3 3 3 | | 898 291666.5 962389
899 291652.6 962382 | 3.7
4.2 2 | 0.6
0.8 | 2
2
G | 1 1 | 4
8 | 1 2 | Wind Turbine
Wind Turbine | | 31.31 3
32.88 3 | 4.47 1
5.50 1 | 18
18 | 3 3 6 | | 900 291682.3 962412
901 291699.7 962421 | 6.5 4
6.6 4 | 0.7
0.5 | 2 G
1 G | 1 1 | 8 4 | 2
1 | Important Habitat
Important Habitat | 8 6 | 50.88 3
52.01 3 | 5.35 1
3.66 1 | 24
24 | 3
3 | | 902 291707.7 962469
903 291690.0 962471 | 1.1 1
3.1 2 | 1.3
0.6 | 3 G | 1 | 3 | 1 | Important Habitat
Important Habitat | 8 | 5.17 4
2.21 4 | 0.09 1
0.08 1 | 32
32 | 5 5 | | 904 291679.9 962472 | 5.3 4 | 0.3 | 1 G | 1 | 4 | 1 | Important Habitat | 8 | 5.53 4 | 0.39 1 | 32
24 | 5 5 | | 905 291668.0 962471
906 291657.8 962469 | 5.8 4 | 0.3
0.4 | 1 G | 1 | 4 | 1 | Important Habitat
Important Habitat | 8 2 | 13.76 3
10.92 3 | 1.25 1
1.96 1 | 24 | 3 3 3 | | 907 291650.0 962472
908 291639.1 962454 | 5.8 4
5.9 4 | 0.3
0.5 | 1 G
1 G | 1 | 4 | 1 1 | Wind Turbine
Wind Turbine | 6 1 | 11.32 3
11.36 3 | -1.31 1
0.68 1 | 18
18 | 3 3 3 | | 909 291625.3 962448
910 291624.9 962475 | 5.9 4
4.6 4 | 0.6
0.6 | 2
2
G | 1 | 8
8 | 2 2 | Wind Turbine
Wind Turbine | 6 1 | 15.48 3
14.15 3 | 1.33 1
-1.30 1 | 18
18 | 3 6 6 | | 911 291618.1 962472
912 291609.6 962471 | 5.1 4
5.1 4 | 0.4
0.4 | 1 G
1 G | 1 1 | 4 | 1
1 | Wind Turbine
Wind Turbine | | 16.46 3
13.41 3 | -1.39 1
-1.67 1 | 18
18 | 3 3 3 | | 913 291529.5 962781
914 291530.1 962792 | 4.6
4.6
4 | 0.6
0.7 | 2 G
G | 1 1 | 8 8 | 2
2 | Wind Turbine
Wind Turbine | 6 4 | 19.03 3
18.39 3 | 0.96 1
0.89 1 | 18
18 | 3
3 | | 915 291529.1 962802
916 291531.5 962810 | 4.6 4
4.8 4 | 0.3 | 1 R
G | 1.5
1 | 6
8 | 2 2 | Wind Turbine
Wind Turbine | 6 2 | 18.37 3
19.87 3 | 0.69 1
0.80 1 | 18
18 | 3
3 | | 917 291529.1 962821
918 291529.7 962830 | 5.2 4
5.3 4 | 0.5
0.3 | 1 G | 1 | 4 | 1 | Wind Turbine
Wind Turbine | | 9.03 4
0.28 4 | 0.25 1
-0.02 1 | 24
24 | 3
3 | | 919 291552.4 962815
920 291553.2 962810 | 5.1 4
4.8 4 | 0.5
0.4 | 1 R | 1.5
1.5 | 6 | 2 | Wind Turbine
Wind Turbine | 6 2 | 26.79 3
00.94 3 | 2.38 1
2.60 1 | 18
18 | 3 6 | | 921 291513.0 962804
922 291512.2 962808 | 4.6 4 | 0.2 | 1 G | 1
1.5 | 4 | 1 | Wind Turbine
Wind Turbine | 6 3 | 0.87 3
17.98 3 | -0.64 1
-0.75 1 | 18
18 | 3 3 | | 923 291505.6 962830
924 291493.1 962826 | 5.3 4
6.4 4 | 0.7
0.3 | 2 R | 1.5
1.5 | 12 | 2 | Wind Turbine
Wind Turbine | 6 2 | 24.37 3
17.19 3 | -2.02 1
-3.11 1 | 18 | 3 6 | | 925 291489.9 962832
926 291499.9 962831 | 6.3
5.6
4 | 0.8
0.8 | 2 G | 1 | 8 | 2 | Wind Turbine Wind Turbine Wind Turbine | 6 4 | 0.14 3
0.13 3 | -3.60 1
-2.56 1 | 18
18 | 3 | | 927 291510.2 962831 | 5.2 4 | 0.6 | 2 G | 1 | 8 | 2 | Wind Turbine | 6 1 | 19.84 3 | -1.70 1 | 18 | 3 | | 928 291519.9 962831
929 291530.1 962830 | 5.2 4
5.3 4 | 0.2
0.1 | 1 G | 1 | 4 | 1 | Wind Turbine
Wind Turbine | 6 | 0.15 3
0.13 4 | -0.88 1
0.01 1 | 18
24 | 3 3 | | 930 291539.1 962832
931 291549.7 962832 | 5.5 4
5.7 4 | 0.2
0.3 | 1 G | 1 | 4 | 1 | Wind Turbine
Wind Turbine | 6 1 | 9.25 4
19.76 3 | 0.81 1
1.86 1 | 24
18 | 3 3 | | 932 291559.8 962831
933 291568.2 962837 | 5.7 4
5.7 4 | 0.5
0.3 | 1 G
1 G | 1 | 4 4 | 1
1 | Wind Turbine
Wind Turbine | 6 3 | 19.86 3
18.95 3 | 2.87 1
3.67 1 |
18
18 | 3 3 | | 934 291570.7 962830
935 291582.0 962831 | 5.8 4
8.4 6 | 0.4
0.2 | 1 G | 1 | 6 | 1 2 | Wind Turbine
Important Habitat | 8 3 | 10.75 3
13.24 3 | 3.95 1
-2.45 1 | 18
24 | 3 3 6 | | 936 291530.4 962842
937 291530.6 962851 | 5.6 4
5.7 4 | 0.5
2 | 1 G | 1
1 | 4
12 | 1 2 | Wind Turbine
Wind Turbine | 6 2 | 1.65 3
1.32 3 | -0.09 1
-0.11 1 | 18
18 | 3
3
6 | | 938 291530.7 962863
939 291528.5 962871 | 5.6 4
5.6 4 | 0.5
0.5 | 1 G | 1
1 | 4 4 | 1
1 | Wind Turbine
Wind Turbine | 6 3 | 3.37 3
11.34 3 | -0.13 1
-0.36 1 | 18
18 | 3
3 | | 940 291529.6 962880
941 291529.9 962894 | 5.6 4
5.6 4 | 0.5
0.9 | 1 G G | 1
1 | 4
8 | 1 2 | Wind Turbine
Wind Turbine | 6 6 | 50.42 3
54.27 3 | -0.26 1
-0.24 1 | 18
18 | 3
3
6 | | 942 291551.7 962909
943 291567.9 962905 | 5.1 4
5.1 4 | 0.4
0.6 | 1 G R | 1
1.5 | 4
12 | 1 2 | Important Habitat
Important Habitat | | 76.97 3
51.49 3 | -3.84 1
-3.75 1 | 24
24 | 3
3
6 | | 944 291513.1 962892
945 291486.9 962898 | 4.8
4.2
4 | 0.8 | 2
3 R | 1 1.5 | 8
18 | 2 3 | Wind Turbine
Wind Turbine | 6 6 | 64.33 3
80.16 3 | -1.87 1
-3.35 1 | 18
18 | 3 6 | | 946 291472.2 962894
947 291469.3 962955 | 4.2
5.9 4 | 0.9 | 2 G | 1 | 8 | 2 | Wind Turbine
Important Habitat | 6 8 | 36.24 3
17.24 3 | -4.45 1
-6.44 1 | 18
24 | 3
3
3 | | 948 291492.9 962964
949 291527.2 962970 | 6.0 4
4.5 4 | 0.5
0.5 | 1 G | 1 1 | 4 | 1 1 | Important Habitat
Important Habitat | | 66.34 3
13.65 3 | -3.93 1
-2.14 1 | 24
24 | 3 3 3 | | 950 291548.6 962969
951 291079.7 962863 | 4.9
4.0
4 | 0.2
0.4 | 1 G R | 1
1.5 | 4
6 | 1 2 | Important Habitat
Wind Turbine | 8 2 | 24.72 3
i3.04 3 | -1.49 1
4.15 1 | 24
18 | 3
3 | | 952 291070.0 962861
953 291060.2 962862 | 4.0
4.0
4 | 0.2
0.2 | 1 G | 1 1 | 4 | 1 | Wind Turbine
Wind Turbine | | 13.19 3
13.51 3 | 3.45 1
2.77 1 | 18
18 | 3 3 | | 954 291047.5 962862
955 291040.2 962862 | 4.5 4
5.1 4 | 0.4
0.2 | 1 R | 1.5
1 | 6 | 2 | Wind Turbine
Wind Turbine | 6 2 | 21.03 3
14.05 3 | 1.87 1
1.23 1 | 18
18 | 3
3 | | 956 291041.5 962880
957 291036.1 962869 | 4.4 4
5.2 4 | 0.9
0.2 | 2 R
1 G | 1.5
1 | 12
4 | 2 | Wind Turbine
Wind Turbine | | 16.86 3
14.68 3 | 1.46 1
0.92 1 | 18
18 | 3
3 | | 958 291029.9 962862
959 291026.8 962857 | 5.2 4
5.2 4 | 0.2
0.3 | 1 G | 1 | 4 | 1 | Wind Turbine
Wind Turbine | 6 | 5.72 4
0.41 4 | 0.30 1
-0.01 1 | 24
24 | 3 3 | | 960 291019.0 962862
961 291009.6 962862 | 5.2 4
5.2 4 | 0.3
0.7 | 1 G | 1 | 4 | 1 | Wind Turbine
Wind Turbine | 6 | 9.34 4
18.04 3 | -0.68 1
-1.52 1 | 24
18 | 3 3 | | 962 291006.4 962875
963 290998.8 962860 | 5.3
3.2
2 | 0.5
0.5 | 1 R | 1.5
1 | 6 | 2 | Wind Turbine
Wind Turbine | 6 2 | 17.62 3
18.38 3 | -1.72 1
-2.44 1 | 18 | 3 6 | | 964 290989.7 962862
965 290979.4 962863 | 2.0 1 | 0.6
0.4 | 2 R | 1.5
1.5 | 3 | i | Wind Turbine Tracks or Paths | 6 3 | 17.59 3
18.72 3 | -2.72 1
1.04 1 | 18 | 3 | | 966 291030.0 962912 | 4.4
4.6
4 | 0.2 | 1 R | 1.5 | 6 | 2 | Wind Turbine | 6 5 | 64.83 3
15.06 3 | 0.60 1
0.66 1 | 18 | 3 6 | | 967 291030.0 962902
968 291030.3 962892 | 4.9 4 | 0.4
0.3 | 1 G | 1 | 4 | 1 | Wind Turbine
Wind Turbine | 6 3 | 15.35 3 | 0.62 1 | 18
18 | 3 3 | | 969 291030.9 962884
970 291029.6 962872 | 5.1 4
5.2 4 | 0.3
0.3 | 1 R
1 G | 1.5 | 4 | 1 | Wind Turbine
Wind Turbine | 6 1 | 7.12 3
15.12 3 | 0.60 1
0.38 1 | 18
18 | 3 3 | | 971 291030.0 962852
972 291029.2 962842 | 5.2 4
5.2 4 | 0.2
0.2 | 1 R
1 R | 1.5
1.5 | 6 | 2 2 | Wind Turbine
Wind Turbine | 6 1 | 6.11 4
15.35 3 | 0.22 1
0.06 1 | 24
18 | 3 6 | | 973 291027.8 962831
974 291029.7 962822 | 4.8 4
4.6 4 | 0.6
0.9 | 2 R
2 G | 1.5
1 | 12
8 | 2 2 | Wind Turbine
Wind Turbine | 6 3 | 26.43 3
15.38 3 | -0.14 1
0.08 1 | 18
18 | 3 6 6 | | 975 291032.2 962812
976 291052.9 962799 | 4.6 4
4.7 4 | 0.4
0.3 | 1 G G | 1 | 4 | 1 1 | Wind Turbine
Wind Turbine | 6 6 | 14.96 3
53.44 3 | 0.35 1
2.23 1 | 18
18 | 3 3 | | 977 291015.4 962776
978 291027.8 962715 | 6.0 4
4.2 4 | 0.4
0.3 | 1 G G | 1 | 4 | 1
1 | Wind Turbine
Wind Turbine | | 31.40 3
12.52 3 | -0.41 1
0.32 1 | 18
18 | 3 3 3 | | 979 291047.3 962720
980 291209.0 962335 | 3.3
8.3
6 | 0.1
0.6 | 1 R G | 1.5
1 | 3
12 | 1 2 | Wind Turbine
Important Habitat | 8 2 | 88.52 3
10.85 3 | 1.48 1
-0.40 1 | 18
24 | 3
3 | | 981 291228.1 962335
982 291244.9 962280 | 5.6 4
1.4 1 | 1.6
0.4 | 3 g G | 1 1 | 12
1 | 2
1 | Important Habitat
Important Habitat | | 3.51 4
17.35 3 | 0.11 1
-0.29 1 | 32
24 | 5 10 3 | | 983 291206.2 962255
984 291238.8 962200 | 5.8 4
6.3 4 | 0.3
0.3 | 1 R G | 1.5
1 | 6
4 | 2
1 | Important Habitat
Wind Turbine | 8 5 | 5.71 3
0.18 4 | -3.39 1
-0.02 1 | 24
24 | 3
3 | | 985 291241.7 962189
986 291238.2 962181 | 7.0 4
7.5 4 | 0.5
0.2 | 1 G | 1 1 | 4 | 1 1 | Wind Turbine
Wind Turbine | | 1.53 3
19.45 3 | -0.36 1
-1.35 1 | 18
18 | 3 3 | | 987 291240.0 962170
988 291239.6 962160 | 7.7 4
7.7 4 | 0.3
0.5 | 1 G | 1 | 4 | 1 | Wind Turbine
Wind Turbine | | 00.19 3
19.93 3 | -2.03 1
-2.85 1 | 18
18 | 3
3 | | 989 291239.3 962150
990 291291.0 962206 | 7.6 4
1.9 1 | 1 | 2 G | 1 | 8 | 2 | Wind Turbine
Important Habitat | 6 4 | 19.72 3
2.09 4 | -3.65 1
-0.03 1 | 18
32 | 3 6 | | 991 291279.3 962202
992 291268.3 962202 | 2.0 2 | 1.6
1.1 | 3
G
G | 1 | 6 | 2 | Important Habitat
Important Habitat | 8 | 1.28 4
2.36 4 | -0.04 1
-0.08 1 | 32
32 | 5 10
5 10 | | 992 291258.3 962202
993 291274.7 962214
994 291259.4 962209 | 2.5
2.5
2.2 | 1.1
1.2
1.2 | 3 R | 1.5
1.5 | 9 | 2 | Important Habitat
Important Habitat | 8 | 0.89 4
0.99 4 | -0.04 1
-0.04 1 | 32
32
32 | 5 10
5 10 | | 995 291259.6 962202
996 291248.6 962203 | 2.5
2.5
4.6 | 0.8
0.7 | 2 G | 1 | 4 | 1 | Important Habitat
Important Habitat | 8 | 1.65 4
1.66 4 | -0.03 1
-0.12 1 | 32
32
32 | 5 5 | | 997 291239.1 962200 | 6.3 4 | 0.4 | 1 G | 1 | 4 | 1 | Wind Turbine | 6 | 0.10 4 | 0.01 1 | 24 | 3 3 | | 998 291229.4 962201
999 291217.9 962200
1000 291208.1 962200 | 6.3 4
7.8 4
7.9 4 | 0.4
0.4
0.3 | 1 6 | 1 | 4 | 1 | Wind Turbine
Wind Turbine
Wind Turbine | 6 2 | 9.71 4
21.13 3
30.94 3 | -0.71 1
-1.93 1
-3.13 1 | 24
18
18 | 3 3
3 3 | | 1001 290888.5 962380 | 2.1 2 | 1.2 | 3 G | 1 | 6 | 2 | Important Habitat | 8 | 2.56 4 | -0.11 1 | 32 | 5 10 | | 1002 290889.5 962390
1003 290905.9 962400 | 1.1 1
1.7 1 | 1.1
0.9 | 3 R
2 G | 1.5
1 | 4.5
2 | 1 1 | Important Habitat
Important Habitat | 8 | 1.93 4
1.75 4 | -0.03 1
-0.03 1 | 32
32 | 5 5 | | 1004 290908.3 962408
1005 290919.5 962413 | 0.9 1
2.3 2 | 0.8
0.5 | 2
1 G | 1 1 | 2 2 | 1 1 | Important Habitat
Important Habitat | 8 | 1.91 4
0.71 4 | -0.01 1
-0.04 1 | 32
32 | 5 5 | | 1006 290939.9 962420
1007 290926.3 962429 | 3.4 2
3.5 2 | 0.7
1 | 2
2 G | 1 1 | 4 4 | 1 1 | Important Habitat
Important Habitat | 8 1 | 1.72 4
11.18 3 | -0.02 1
0.56 1 | 32
24 | 5 3 | | 1008 291950.1 962861
1009 291949.9 962871 | 1.5 1
1.5 1 | 0.4
0.4 | 1 G
1 G | 1 | 1 1 | 1
1 | Wind Turbine
Wind Turbine | 6 5 | 6.41 3
51.01 3 | 1.00 1
0.76 1 | 18
18 | 3
3 | | 1010 291949.5 962882
1011 291949.5 962892 | 1.5 1
1.5 1 | 0.6 | 2
2
G | 1
1 | 2 2 | 1
1 | Wind Turbine
Wind Turbine | | 16.24 3
13.96 3 | 0.46 1
0.22 1 | 18
18 | 3
3 | | 1012 291951.6 962901
1013 291951.5 962911 | 2.2
3.0 2 | 1.1
0.7 | 3 G R | 1
1.5 | 6
6 | 2 2 | Wind Turbine
Wind Turbine | 6 4 | 11.46 3
13.63 3 | -0.02 1
-0.58 1 | 18
18 | 3
3
6 | | 1014 291954.1 962916
1015 291948.3 962922 | 2.3
1.5 1 | 0.3
0.4 | 1 G R | 1
1.5 | 2
1.5 | 1
1 | Wind Turbine
Wind Turbine | 6 4 | 12.87 3
60.74 3 | -0.82 1
-0.95 1 | 18
18 | 3 3 3 | | 1016 291950.4 962931
1017 291949.8 962941 | 1.4 1
1.5 1 | 0.4 | 1 G G | 1 1 | 1 2 | 1 | Wind Turbine
Wind Turbine | 6 | 64.04 3
61.03 3 | -1.19 1
-1.42 1 | 18
18 | 3 3 3 | | 1017 291949.8 902941
1018 291952.5 962952
1019 291923.4 962963 | 1.5
1.7
1.7 | 1 2 | 2 G
3 G | 1 1 | 2 3 | 1 | Wind Turbine
Wind Turbine
Wind Turbine | 6 6 | 57.57 3
04.92 3 | -1.42 1
-1.71 1
-1.97 1 | 18
18 | 3 3 | | 1020 291885.9 962970
1021 291881.9 962956 | 1.7 1 | 1.2
1.4 | 3 G | 1 | 3 | 1 | Wind Turbine
Wind Turbine
Wind Turbine | 6 12 | 28.96 3
25.21 3 | -2.13 1
-1.70 1 | 18
18 | 3 3 | | 1021 291881.9 962936
1022 291895.1 962927
1023 291890.5 962912 | 2.0 1 | 2.3
1.7 | 3 R | 1.5
1.5 | 4.5
4.5 | 1 | Wind Turbine
Wind Turbine
Wind Turbine | 6 10 | 02.17 3
03.46 3 | -1.70 1
-0.86 1
-0.29 1 | 18
18 | 3 3 | | 1023 291890.3 962912
1024 291900.7 962912
1025 291909.7 962912 | 1.9
1.9
1.8 | 2.3
2.1 | 3 G
3 R | 1
1
1.5 | 4.5
3
4.5 | 1 | Wind Turbine
Wind Turbine
Wind Turbine | 6 9 | 93.33 3
34.40 3 | -0.29 1
-0.37 1
-0.44 1 | 18
18 | 3 3 | | 1025 291909.7 962912
1026 291920.3 962911
1027 291930.8 962912 | 1.8
2.0
2.5 | 2.1
1.8
1.2 | 3 R | 1.5
1.5 | 9 | 2 | Wind Turbine
Wind Turbine
Wind Turbine | 6 7 | 34.40 3
73.91 3
53.76 3 | -0.44 1
-0.48 1
-0.53 1 | 18
18 | 3 6 | | 1027 291930.8 962912
1028 291939.5 962911
1029 291954.4 962916 | 2.5
2.7
2.2
2 | 1.2
1
0.4 | 2 G | 1
1
1.5 | 4 3 | 1 | Wind
Turbine
Wind Turbine
Wind Turbine | 6 5 | 55.76 3
55.11 3
12.69 3 | -0.53 1
-0.53 1
-0.83 1 | 18
18
18 | 3 3 | | 1030 291959.8 962911
1031 291970.4 962913 | 3.1
3.1
2 | 0.4
0.4
0.3 | 1 G
1 G | 1.5
1
1 | 2 2 | 1 | Wind Turbine
Wind Turbine
Wind Turbine | 6 3 | 15.66 3
17.12 3 | -0.83 1
-0.60 1
-0.75 1 | 18
18
18 | 3 3 | | 1031 291970.4 962915
1032 291970.4 962895
1033 291978.5 962934 | 2.0 2 | 0.4 | 1 6 | 1 | 2 | i | Wind Turbine
Wind Turbine
Wind Turbine | 6 2 | 12.78 3
19.02 3 | 0.20 1
-1.45 1 | 18
18 | 3 3 | | 1033 291978.3 962934
1034 291980.5 962912
1035 291990.2 962912 | 3.3
3.3
2 | 0.4
0.4 | 1 G G | 1 | 2 2 | i | Wind Turbine
Wind Turbine
Wind Turbine | 6 1 | 8.64 3
4.74 3 | -1.45 1
-0.72 1
-0.79 1 | 18
18 | 3 3 | | 1036 291999.6 962912
1037 292163.5 962744 | 3.2
2.4
2 | 0.3
1.2 | 1 G 3 R | 1
1.5 | 2 9 | 1 2 | Wind Turbine
Important Habitat | 6 1 | 15.31 3
12.91 3 | -0.83 1
0.48 1 | 18
24 | 3 3 6 | | 1038 292144.8 962734
1039 292165.8 962702 | 2.4
2.5
2 | 1 0.5 | 2 R
1 G | 1.5 | 6
2 | 2
1 | Important Habitat
Important Habitat | 8 5 | 33.72 3
9.06 3 | 0.93 1
2.29 1 | 24
24 | 3
3 | | | | | | | | | | | | | | | | 1040 292180.7 962718
1041 292195.4 962695 | 2.5
3.7
2 | 1.1
1.2
3 | R
R | 1.5
1.5 | 9 | 2
2 | Important Habitat
Important Habitat | 8 37
8 57 | 7.91 3
7.96 3 | 1.58 1
2.60 1 | 24
24 | 3 3 | 6 | |--|-------------------------|-----------------------------|--------|------------|------------|--------|---|--------------|---------------------------|-----------------------------|----------------|--------|----------| | 1042 292208.7 962701
1043 292169.8 962659 | 3.0 2
4.3 4 | 1.2
1.6
3 | R
R | 1.5
1.5 | 9
18 | 2
3 | Important Habitat
Wind Turbine | | 1.69 3
0.19 3 | 2.30 1
-1.44 1 | 24
18 | 3 | 6 | | 1044 292209.3 962662
1045 292222.1 962671 | 4.3 4
4.3 4 | 1 2
0.5 1 | G | 1 1 | 8 | 2 | Wind Turbine
Wind Turbine | | 4.46 3
2.48 3 | -1.45 1
-2.08 1 | 18
18 | 3 | 6 | | 1046 292209.9 962652 | 4.1 4 | 0.6 2 | R | 1.5 | 12 | 2 | Wind Turbine | 6 29 | 9.58 3 | -0.71 1 | 18 | 3 | 6 | | 1047 292210.1 962641
1048 292210.9 962631 | 3.5
2.9
2 | 0.2 1 | R
G | 1.5
1 | 6
2 | 1 | Wind Turbine
Wind Turbine | 6 29 | 7.98 3
9.46 3 | 0.02 1
0.57 1 | 18
18 | 3 | 3 | | 1049 292209.7 962622
1050 292210.9 962612 | 2.8
2.8
2 | 0.7
0.5
1 | R
G | 1.5
1 | 6 2 | 2
1 | Wind Turbine
Wind Turbine | | 5.21 3
1.45 3 | 1.03 1
1.54 1 | 18
18 | 3 | 6
3 | | 1051 292211.0 962602
1052 292211.2 962592 | 2.8 2
2.8 2 | 0.4 1
0.3 1 | G
G | 1 1 | 2 2 | 1
1 | Wind Turbine
Wind Turbine | | 9.13 3
7.37 3 | 2.02 1
2.50 1 | 18
18 | 3 | 3 3 | | 1053 292208.0 962587
1054 292209.9 962581 | 2.8
2.8
2 | 0.4 1
0.5 1 | G | 1
1.5 | 2 | 1 | Wind Turbine
Wind Turbine | 6 63 | 3.32 3
7.83 3 | 2.74 1
3.04 1 | 18
18 | 3 | 3 | | 1055 292210.7 962572
1056 292245.2 962608 | 2.8
2.8
2.8 | 0.6
0.4
1 | G | 1 | 4 | 1 | Wind Turbine | 6 76 | 5.31 3 | 3.51 1 | 18 | 3 | 3 | | 1057 292241.1 962614 | 2.8 2 | 0.4 1 | G | 1 | 2 2 | 1 | Wind Turbine
Wind Turbine | 6 29 | 5.41 3
9.60 3 | 1.71 1
1.46 1 | 18
18 | 3 | 3 | | 1058 292250.0 962611
1059 292259.8 962612 | 2.9 2
3.7 2 | 0.4 1
0.2 1 | R
R | 1.5
1.5 | 3
3 | 1 1 | Wind Turbine
Wind Turbine | 6 37 | 3.78 3
7.78 3 | 1.55 1
1.39 1 | 18
18 | 3 | 3 3 | | 1060 292270.0 962611
1061 292243.6 962640 | 2.7
2.9
2 | 0.2 1
0.3 1 | G
G | 1 | 2 2 | 1
1 | Wind Turbine
Wind Turbine | 6 | 5.21 3
5.22 4 | 1.08 1
0.13 1 | 18
24 | 3 | 3 | | 1062 292232.0 962631
1063 292128.6 962752 | 2.8
2.5
2 | 0.8 2
0.8 2 | G
G | 1 1 | 4 | 1
1 | Wind Turbine
Important Habitat | | 3.73 3
5.07 3 | 0.61 1
1.10 1 | 18
24 | 3 | 3 | | 1064 292153.6 962767
1065 292147.2 962815 | 2.6
2.5
2 | 1.2
1.6
3 | R
G | 1.5
1 | 9 | 2
2 | Important Habitat
Important Habitat | | 7.17 3
3.16 3 | 0.42 1
0.71 1 | 24
24 | 3 | 6 | | 1066 292133.7 962810
1067 292118.9 962803 | 2.5
2.5
2 | 1.1 3 | G | 1 | 6 | 2 | Important Habitat
Important Habitat | 8 31 | 1.88 3
3.21 3 | 1.10 1
1.60 1 | 24
24 | 3 | 6 | | 1068 292094.0 962849
1069 292109.8 962854 | 2.7 2 | 1.2 3 | G | 1 | 6 | 2 | Important Habitat
Important Habitat | 8 54 | 4.69 3
3.26 3 | 1.93 1
1.38 1 | 24
24 | 3 | 6 | | 1070 292125.7 962862
1071 292090.4 962905 | 2.7 2 2 2 2 2 | 1.2
1.2
3
0.2 | R | 1.5 | 9 | 2 | Important Habitat | 8 20 | 0.43 3
1.40 3 | 0.68 1
2.01 1 | 24
24
24 | 3 | 6 | | 1072 292074.2 962898 | 3.3 2 | 0.4 1 | R | 1
1.5 | 3 | 1 | Important Habitat
Important Habitat | 8 68 | 3.97 3 | 2.74 1 | 24 | 3 | 3 | | 1073 292030.9 962942
1074 292024.4 962920 | 1.9
2.9
2 | 0.8 2
0.4 1 | G
G | 1 | 2 2 | 1 | Wind Turbine
Wind Turbine | 6 38 | 3.06 3
3.17 3 | -2.46 1
-1.64 1 | 18
18 | 3 | 3 | | 1075 292017.7 962902
1076 291822.5 962966 | 2.6 2
1.1 1 | 0.7 2
0.4 1 | G
R | 1
1.5 | 4
1.5 | 1 1 | Wind Turbine
Important Habitat | 8 134 | 4.98 3
4.25 3 | -0.64 1
1.69 1 | 18
24 | 3 | 3 3 | | 1077 291817.1 962942
1078 291754.7 962959 | 2.1
1.0 2 | 0.6
1 2 | G
G | 1 1 | 4 2 | 1
1 | Important Habitat
Important Habitat | | 4.83 3
7.78 3 | 2.40 1
2.56 1 | 24
24 | 3 | 3 | | 1079 291765.5 962994
1080 291720.7 963024 | 1.3
1.4
1 | 1.2
0.7
2 | G
G | 1 1 | 3 2 | 1
1 | Important Habitat
Important Habitat | | 0.27 3
5.54 3 | 2.51 1
3.98 1 | 24
24 | 3 3 | 3 3 | | 1081 291702.5 963005
1082 291692.8 962990 | 2.7 2 3.0 2 | 0.2 1
0.3 1 | G
R | 1
1.5 | 2 3 | 1 1 | Important Habitat | 8 57 | 7.81 3
2.63 3 | 3.60 1
3.15 1 | 24
24 | 3 | 3 3 | | 1083 291686.5 962973
1084 291635.9 962980 | 2.6
3.1
2 | 0.4 1 | R
G | 1.5 | 3 | 1 | Important Habitat
Important Habitat | | 5.55 3
2.33 4 | 1.32 1
-0.01 1 | 24
32 | 3 5 | 3 | | 1085 291641.4 962996
1086 291646.1 963012 | 2.7 2 3.1 2 | 1 2 | G
G | 1 | 4 | i | Important Habitat | 8 | 2.72 4
1.12 4 | 0.07 1
0.04 1 | 32
32 | 5 | 5 | | 1087 291651.6 963027 | 3.3 2 | 0.4 1 | 6 | 1 | 2 | i | Important Habitat
Important Habitat | 8 | 7.39 4 | 0.41 1 | 32 | 5 | 5 | | 1088 291655.9 963044
1089 291608.1 963071 | 3.8 2
1.4 1 | 0.3
1.1
3 | G
G | 1.5 | 3 | 1 1 | Important Habitat
Important Habitat | 8 8 | 2.03 3
3.11 4 | 1.38 1
0.19 1 | 24
32 | 5 | 5 | | 1090 291596.4 963060
1091 291581.8 963044 | 1.4
1.3
1 | 1.2
1.7 3 | R
R | 1
1.5 | 3
4.5 | 1 | Important Habitat
Important Habitat | 8 | 2.07 4
2.14 4 | 0.02 1
0.03 1 | 32
32 | 5
5 | 5 | | 1092 291578.1 963026
1093 291571.0 963010 | 1.5 1
2.4 2 | 2 3
0.7 2 | R
G | 1.5
1 | 4.5
4 | 1
1 | Important Habitat
Important Habitat | 8 | 3.14 4
2.31 4 | -0.08 1
0.08 1 | 32
32 | 5
5 | 5
5 | | 1094 291561.4 962995
1095 291539.1 962997 | 2.6
2.4
2 | 0.3 1
0.3 1 | G
G | 1 1 | 2 2 | 1
1 | Important Habitat
Important Habitat | | 2.20 4
5.09 4 | 0.09 1
-0.20 1 | 32
32 | 5
5 | 5
5 | | 1096 291518.2 962998
1097 291507.7 963002 | 2.6
3.4
2 | 1 2
0.4 1 | G | 1 1 | 4 2 | 1 1 | Important Habitat
Important Habitat | 8 15 | 5.59 3
5.46 3 | -0.49 1
-0.73 1 | 24
24 | 3 | 3 3 | | 1098 291511.8 963019
1099 291516.1 963038 | 2.6
1.8
1 | 0.3 1 | G | 1 | 2 2 | 1 | Important Habitat
Important Habitat | 8 | 5.50 4
0.89 4 | -0.22 1
0.02 1 | 32
32 | 5 | 5 | | 1100 291529.4 963044
1101 291548.5 963042 | 1.8 1 | 1.6 3 | R | 1.5
1.5 | 4.5
4.5 | î | Important Habitat | 8 | 0.91 4
2.18 4 | -0.01 1
-0.07 1 | 32
32 | 5 | 5 | | 1102 291515.3 963060 | 1.8 1 | 0.9 2 | G
G | 1 | 2 | i | Important Habitat
Important Habitat | 8 | 2.05 4 | 0.04 1 | 32 | 5 | 5 | | 1103 291512.5 963075
1104 291511.7 963095 | 1.8
0.8
1 | 0.5 1
0.6 2 | R
R | 1.5
1.5 | 1.5
3 | 1 | Important Habitat
Important Habitat | 8 | 3.00 4
2.37 4 | 0.10 1
0.02 1 | 32
32 | 5
5 | 5 | | 1105 291465.0 963100
1106 291442.2 963091 | 3.0 2
3.1 2 | 0.2 1
0.8 2 | G
G | 1 1 | 2
4 | 1 1 | Important Habitat
Important Habitat | 8 58 | 5.32 3
3.06 3 | -1.16 1
-2.21 1 | 24
24 | 3 | 3 | | 1107 291420.8 963086
1108 291405.6 963141 | 3.3
8.0
4 | 0.7 2
0.3 1 | R
G | 1.5
1 | 6
4 | 2
1 | Important Habitat
Wind Turbine | 6 85 | 9.52 3
5.69 3 | -2.95 1
-1.52 1 | 24
18 | 3 | 6 | | 1109 291391.4 963143
1110 291389.3 963174 | 10.9
3.0
6 | 0.2 1
0.3 1 | G
G | 1 1 | 6 2 | 2
1 | Wind Turbine
Wind Turbine | | 5.49 3
5.48 3 | 0.10 1
2.36 1 | 18
18 | 3 | 6 | | 1111 291386.6 963213
1112 291384.9 963241 | 2.5
2.6
2 | 0.3 1
0.2 1 | G | 1 | 2 2 | 1 | Wind Turbine
Wind Turbine | | 7.88 3
0.08 3 | 1.61 1
0.58 1 | 18
18 | 3 | 3 | | 1113 291420.4 963256
1114 291423.5 963247 | 2.1 2 | 0.6 2
0.7 2 | G
R | 1
1.5 | 4 | 1 | Wind Turbine
Wind Turbine | 6 31 | 1.91 3
4.53 3 | -0.80 1
-0.95 1 | 18
18 | 3 | 3 | | 1115 291433.3 963207 | 3.8 2 | 0.2 1 | R | 1.5
1.5 | 3 | 1 | Wind Turbine | 6 29 | 9.15
2.70
3 | -0.78 1 | 18
18 | 3 | 3 | | 1116 291443.7 963199
1117 291450.5 963175 | 2.6 2 | 0.2 1 | K
G | 1.5 | 2 | i | Wind Turbine
Important Habitat | 8 34 | 4.79 3 | -1.13 1
1.45 1 | 24 | 3 | 3 | | 1118 291443.1 963170
1119 291435.1 963168 | 4.5 4
5.4 4 | 0.2 1
0.2 1 | G
G | 1 | 4 | 1 1 | Important
Habitat
Important Habitat | 8 50 | 2.22 3
0.42 3 | 1.72 1
2.06 1 | 24
24 | 3 | 3
3 | | 1120 291426.0 963163
1121 291417.6 963147 | 6.1 4
6.3 4 | 0.4 1
0.5 1 | R
G | 1.5
1 | 6
4 | 2
1 | Important Habitat
Important Habitat | | 0.01 3
2.43 3 | 2.20 1
1.28 1 | 24
24 | 3 | 6 | | 1122 291414.7 963117
1123 291429.2 963116 | 4.1
3.9 2 | 0.3
0.1
1 | G
G | 1 1 | 4 2 | 1
1 | Important Habitat
Important Habitat | | 5.55 3
1.06 3 | -1.26 1
-1.15 1 | 24
24 | 3 | 3 | | 1124 291437.2 963127
1125 291448.4 963133 | 3.4
3.2
2 | 0.3
0.4
1 | G
G | 1 1 | 2 2 | 1
1 | Important Habitat
Important Habitat | | 3.08 3
0.94 3 | -0.47 1
-0.43 1 | 24
24 | 3 | 3 3 | | 1126 291464.5 963067
1127 291464.7 963051 | 3.1 2
3.9 2 | 0.5 1
0.6 2 | R | 1.5
1 | 3 | ; | Important Habitat
Important Habitat | | 5.69 3
5.23 3 | -2.15 1
-2.58 1 | 24
24 | 3 | 3 | | 1128 291458.7 963030
1129 291449.0 963014 | 3.5
2
3.4
2 | 0.6
0.8
2 | R | 1.5 | 6 | 2 | Important Habitat
Important Habitat | 8 48 | 3.18 3
3.51 3 | -3.55 1
-4.59 1 | 24 | 3 | 6 | | 1130 291402.0 963028
1131 291405.9 963042 | 5.0 4 | 0.5 | R | 1.5 | 6 | 2 | Important Habitat | 8 102 | 2.69 3 | -6.44 1
-5.32 1 | 24 | 3 | 6 | | 1132 291409.5 963054 | 4.9 4
4.8 4
5.5 4 | 0.1 1
0.3 1 | R | 1 1.5 | 6 | 2 | Important Habitat
Important Habitat | 8 90 | 5.67 3
0.86 3 | -4.38 1 | 24
24 | 3 | 6 | | 1133 291356.5 963061
1134 291350.7 963045 | 5.8 4 | 0.4 1 | K
G | 1.5
1 | 4 | 1 | Important Habitat
Important Habitat | 8 115 | 2.68 3
5.51 3 | 16.70 2
15.10 2 | 24
24 | 3 | 3 | | 1135 291342.2 963032
1136 291293.8 963029 | 8.4
8.3
6 | 0.4 1
0.1 1 | G
R | 1
1.5 | 6
9 | 2 2 | Important Habitat
Important Habitat | 8 59 | 7.13 3
9.29 3 | 13.44 2
7.08 1 | 24
24 | 3 | 6 | | 1137 291290.6 963045
1138 291287.9 963066 | 12.2 6
11.9 6 | 0.3 1
0.3 1 | G
G | 1 | 6
6 | 2 2 | Important Habitat
Important Habitat | 8 57 | 5.46 3
7.33 3 | 7.56 1
8.34 1 | 24
24 | 3 | 6 | | 1139 291262.9 963078
1140 291240.2 963077 | 8.4
6.2 4 | 0.4 1
0.3 1 | G
G | 1 | 6
4 | 2
1 | Important Habitat
Important Habitat | 8 27 | 4.04 3
7.29 3 | 4.18 1
2.55 1 | 24
24 | 3 | 6 | | 1141 291276.0 963106
1142 291301.0 963118 | 12.3
9.4
6 | 0.3 1
0.4 1 | R
R | 1.5
1.5 | 9 | 2 2 | Important Habitat
Important Habitat | | 3.37 3
9.77 3 | 8.10 1
12.96 2 | 24
24 | 3 | 6 | | 1143 291315.1 963122
1144 291302.8 963176 | 10.2
11.3 6 | 0.3 1
0.3 1 | R
G | 1.5
1 | 9
6 | 2
2 | Important Habitat
Important Habitat | | 2.36 3
3.35 3 | 15.20 2
18.71 2 | 24
24 | 3 | 6 | | 1145 291280.9 963180
1146 291237.9 963185 | 11.3
8.3
6 | 0.3 1
0.5 1 | R
G | 1.5
1 | 9 | 2 2 | Important Habitat | 8 92 | 2.27 3
2.54 3 | 14.52 2
5.87 1 | 24
24 | 3 | 6 | | 1147 291254.6 963232
1148 291273.8 963236 | 12.7
14.2 6 | 0.5 1
0.4 1 | G
R | 1
1.5 | 6 | 2 2 | Important Habitat
Important Habitat | | 4.59 3
3.63 3 | 7.95 1
12.82 2 | 24
24 | 3 | 6 | | 1149 291233.3 963239
1150 291226.4 963292 | 6.2 4 2.2 | 0.4 1 | R | 1.5
1.5 | 6 | 2 | Important Habitat
Important Habitat | 8 53 | 3.11 3
5.37 3 | 4.55 1
3.30 1 | 24
24 | 3 | 6 | | 1150 291220.4 903292
1151 291241.6 963299
1152 291217.7 963294 | 7.1 4 | 0.4 1 | R | 1.5
1.5 | 6 | 2 | Important Habitat | 8 62 | 2.36 3
3.02 3 | 4.21 1
2.97 1 | 24
24
24 | 3 | 6 | | 1153 291212.6 963280 | 4.2
4.4
4.4 | 0.7
0.7
2
0.7
2 | G | 1 1 | 8 | 2 | Important Habitat | 8 30 | 0.02 3
1.92 3 | 2.72 1
2.96 1 | 24
24
24 | 3 | 6 | | 1154 291216.7 963314
1155 291186.2 963313 | 4.7 4 | 0.4 1 | G | 1 | 4 | 1 | Important Habitat
Important Habitat | 8 12 | 2.01 3 | 1.26 1 | 24 | 3 | 3 | | 1156 291172.3 963293
1157 291142.3 963293 | 1.7
0.7
1 | 0.6 2
3.3 8 | G
G | 1 | 2
8 | 1
2 | Important Habitat
Important Habitat | 8 | 2.16 4
2.15 4 | 0.02 1
-0.02 1 | 32
32 | 5
5 | 10 | | 1158 291157.9 963318
1159 291157.7 963332 | 1.4 1
1.6 1 | 1.6 3
1.7 3 | G
G | 1 | 3
3 | 1 1 | Important Habitat
Important Habitat | | 2.38 4
2.91 4 | 0.03 1
-0.03 1 | 32
32 | 5
5 | 5
5 | | 1160 291126.9 963336
1161 291095.3 963334 | 2.1
7.8 2 | 3.8
0.3
1 | r
G | 1.5
1 | 24
4 | 3
1 | Important Habitat
Important Habitat | | 2.81 4
4.97 4 | -0.03 1
0.64 1 | 32
32 | 5
5 | 15
5 | | 1162 291138.7 963278
1163 291128.6 963290 | 0.9
1.0
1 | 3
3.5
8 | R
R | 1.5
1.5 | 4.5
12 | 1
2 | Important Habitat
Important Habitat | 8 8 | 1.55 4
2.74 4 | -0.01 1
0.04 1 | 32
32 | 5
5 | 5
10 | | 1164 291117.0 963291
1165 291107.5 963292 | 1.5
3.1
2 | 3.4 8
2.8 3 | R
R | 1.5
1.5 | 12
9 | 2 2 | Important Habitat
Important Habitat | 8 | 3.04 4
2.49 4 | 0.04 1
-0.18 1 | 32
32 | 5
5 | 10 | | 1166 291099.9 963292
1167 291097.1 963277 | 4.3 4 | 2 3 | r
R | 1.5
1.5 | 18
18 | 3 | Important Habitat | 8 | 1.11 4
2.35 4 | 0.03 1
-0.19 1 | 32
32
32 | 5 | 15
15 | | 1167 291097.1 963277
1168 291089.5 963293
1169 291078.3 963340 | 4.8
6.8
4
5.8 | 0.4 1
0.4 1 | G
G | 1.5 | 4 | 1 | Important Habitat
Important Habitat
Important Habitat | 8 | 2.35
5.71
4
2.00 | -0.19 1
0.45 1
3.05 1 | 32
32
24 | 5 | 5
3 | | 1170 291079.1 963330
1171 291079.8 963321 | 5.5 4 | 0.4 1 | G | 1 | 4 | 1 | Important Habitat | 8 17 | 7.42 3 | 2.68 1
2.72 1 | 24 | 3 | 3 | | 1172 291080.2 963312 | 7.3
10.8
6 | 0.3 1
0.3 1 | G | 1 | 6 | 1 2 | Important Habitat
Important Habitat | 8 15 | 5.57 3
5.05 3 | 3.14 1 | 24
24 | 3 | 6 | | 1173 291079.5 963302
1174 291079.5 963294 | 12.3
11.9
6 | 0.3 1
0.2 1 | G | 1 | 6 | 2 2 | Wind Turbine
Wind Turbine | 6 | 7.65 4
0.55 4 | 0.65 1
0.11 1 | 24
24 | 3 | 6 | | 1175 291070.1 963294
1176 291059.0 963295 | 11.3
5.1
4 | 0.3 1
0.2 1 | G
G | 1
1 | 6
4 | 2
1 | Wind Turbine
Wind Turbine | 6 21 | 9.96 4
1.07 3 | 1.88 1
3.75 1 | 24
18 | 3 | 6
3 | | 1177 291050.1 963292
1178 291039.4 963291 | 13.6 6
21.3 8 | 0.2 1
0.3 1 | g
G | 1
1 | 6
8 | 2 2 | Wind Turbine
Wind Turbine | 6 30
6 40 | 0.05 3
0.72 3 | 2.59 1
-0.75 1 | 18
18 | 3 | 6 | | 1179 291030.4 963291
1180 291060.6 963317 | 24.2
9.4
6 | 0.4 1
0.3 1 | G
G | 1
1 | 8
6 | 2 2 | Wind Turbine
Wind Turbine | 6 30 | 9.74 3
0.25 3 | -4.37 1
0.94 1 | 18
18 | 3 3 | 6 | | 1181 291079.9 963242
1182 291079.9 963252 | 7.9 4
7.9 4 | 0.3 1
0.4 1 | R
G | 1.5
1 | 6 | 2 | Important Habitat
Important Habitat | 8 15 | 5.43 3
5.43 3 | -1.26 1
-1.25 1 | 24
24 | 3 | 6 3 | | 1183 291079.9 963262
1184 291079.1 963271 | 8.3
12.4
6 | 0.3
1
0.5 | G | 1 | 6 | 2 2 | Important Habitat
Important Habitat | 8 15 | 5.39 3
1.26 3 | -1.09 1
0.75 1 | 24
24
24 | 3 | 6 | | 1185 291079.6 963281
1186 291079.9 963292 | 11.4
11.8
6 | 0.5
1
0.4
1 | G
R | 1
1.5 | 6 | 2 2 | Important Habitat Wind Turbine | 8 10 | 2.30 4 | 1.13 1
-0.15 1 | 24
24 | 3 | 6 | | 1187 291080.0 963294
1188 291059.0 963275 | 11.9 6
16.6 8 | 0.5
0.2
1 | G
G | 1 1 | 6
8 | 2 2 | Wind Turbine
Wind Turbine | 6 | 0.00 4
3.07 3 | 0.00 1
1.68 1 | 24
18 | 3 | 6 | | | | | • | | | | _ | | | | | | | | March Marc | 1 | 13.10 3 1.55 1 24 3 6 6 72.27 3 4.66 1 24 3 6 6 83.11 3 -4.66 1 24 3 6 6 83.11 3 -4.66 1 24 3 6 6 83.11 3 -4.66 1 24 3 6 6 83.11 3 -4.66 1 24 3 6 6 83.11 3 6 6 83.11 3 6 6 83.11 3 6 6 83.11 3 6 6 83.11 3 6 6 83.11 3 6 6 83.11 3 6 6 83.11 3 6 6 83.11 3 7.76 1 7. |
--|--|--| | 100 00022 01000 | 1 | 2.82 4 0.09 1 32 5 5 5 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 1272 2013199 961882 3.0 2 0.5 1 8 1.5 3 1 1 mportant Habitat 8 9.97 4 0.02 1 32 1 224 1 27 2013199 961912 2.1 2 2 3 6 6 1 1 6 2 mportant Habitat 8 6.36.6 3 3 0.82 1 2 4 1 2 4 1 1 1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 2 2 2 3 3 6 1 1 2 4 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 2 1 2 | 0.4 1 G 1 1 mportant habitat 8 0.4 1 R 1.5 6 2 important habitat 8 1.5 1.8 2 important habitat 8 1.5 18 3 important habitat 8 1.5 18 3 important habitat 8 1.5 1.5 1.8 3 important habitat 8 1.5 1.5 1.6 2 important habitat 8 1.5 | 138.50 | | 1294 291333.9 962366 3.2 2 1.4 3 6 1 6 2 Important Habitat 8 51.99 3 3 3.65 1 24 1295 291245.7 962545 2.2 2 0.5 1 0 6 1 1 8 8 2 2 Important Habitat 8 51.99 3 3 3.65 1 24 1296 291245.7 962545 2.2 2 0.5 1 0 6 1 2 1 0 0 1 0 2 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 | 1.5 | 0.33 | | 1 | 1 | 1440 3 1.13 1 24 3 3 1.12 4 -0.12 1 32 5 5 41.16 3 3.35 1 24 3 6 6 1.42 4 -0.05 1 32 5 5 5 16.38 3 -0.39 1 24 3 3 3 100.24 3 -0.19 1 24 3 6 6 100.07 3 -0.47 1 24 3 3 6 6 104.07 3 -0.47 1 24 3 3 6 6 105.07 3 -0.47 1 24 3 3 6 6 104.07 3 -0.47 1 24 3 3 3 6 6 143.81 3 -1.762 1 24 3 | | 1338 290994.2 962700
1339 291021.3 962754
1340 291049.0 962754 | 3.7 2
6.9 4
3.9 2 | 0.5 1
0.5 1
0.5 1 | G
 G
 G | 1
1
1 | 2
4
2 | 1
1
1 | Minor Watercourse
Wind Turbine
Wind Turbine | 6 125.89
6 103.32
6 105.66 | 3
3
3 | 14.77 2
0.28 1
2.51 1 | 18
18
18 | 3
3
3 | 3
3
3 | |--|--------------------------------------|----------------------------------|------------------|--------------------------|----------------------|------------------|--|--|------------------|--|----------------------------|------------------|--------------------| | 1341 291006.1 962665
1342 290980.8 962673
1343 291001.1 962850
1344 290979.8 962853 | 3.5 2
3.8 2
4.2 4
2.5 2 | 0.1 1 1 0.3 1 1 0.6 2 0.1 1 1 | G
G
G
R | 1
1
1
1.5 | 2
2
8
3 | 1
1
2 | Minor Watercourse
Minor Watercourse
Wind Turbine
Tracks or Paths | 6 153.57
6 128.39
6 26.72
2 45.53 | 3
3
3 | 15.70 2
14.28 2
-2.37 1
0.89 1 | 18
18
18 | 3
3
3 | 3
6
1 | | 1345 290929.1 962886
1346 290934.4 962904
1347 290935.0 962912
1348 290932.0 962924 | 3.3 2
3.0 2
2.3 2
2.1 2 | 0.5 1
0.1 1
0.2 1
0.5 1 | G
G
R
G | 1
1
1.5
1 | 2
2
3
2 | 1
1
1 | Tracks or Paths
Tracks or Paths
Tracks or Paths
Tracks or Paths | 2 9.17
2 10.47
2 16.75
2 26.79 | 4
3
3
3 | -0.40 1
0.01 1
0.51 1
0.34 1 | 8
6
6 | 2
1
1
1 | 2
1
1 | | 1349 290989.4 962946
1350 290971.3 962966
1351 291009.9 962922
1352 291011.2 962912 | 2.5 2
4.0 4
5.8 4
6.0 4 | 0.3 1
0.9 2
0.2 1
0.2 1 | R
R
G | 1.5
1.5
1
1.5 | 3
12
4
6 | 1
2
1
2 | Tracks or Paths
Tracks or Paths
Wind Turbine
Wind Turbine | 2 69.71
2 80.79
6 66.96
6 56.98 | 3
3
3
3 | 0.74 1
0.71 1
-1.49 1
-1.15 1 | 6
6
18
18 | 1
1
3
3 | 1
2
3
6 | | 1353 291059.9 962892
1354 291060.4 962912
1355 291059.9 962932 | 4.0 FALSE
4.0 2
3.4 2 | 0.2 1
0.1 1
0.3 1 | G
R | 1
1.5
1.5 | 0
3
3 | 1 1 | Wind Turbine
Wind Turbine
Wind Turbine | 6 47.80
6 64.40
6 81.63 | 3 3 3 | 2.77 1
2.50 1
1.71 1 | 18
18
18 |
3
3
3 | 3 3 3 | | 1356 291109.9 962932
1357 291109.9 962912
1358 291109.9 962892
1359 291159.5 962892 | 6.8 4
6.7 4
4.4 4
6.7 4 | 0.5 1
0.2 1
0.2 1
0.5 1 | G
G
G
R | 1
1
1
1.5 | 4
4
4
6 | 1
1
1
2 | Minor Watercourse
Wind Turbine
Wind Turbine
Important Habitat | 6 108.33
6 99.31
6 89.85
8 90.31 | 3
3
3 | -0.50 1
5.77 1
6.25 1
-6.97 1 | 18
18
18
24 | 3
3
3
3 | 3
3
3 | | 1360 291158.3 962913
1361 291158.5 962935
1362 291211.2 962947
1363 291221.2 962917 | 5.7 4
6.0 4
3.3 2
3.0 2 | 0.5 1
0.1 1
0.5 1
0.5 1 | G
R
G | 1
1.5
1 | 4
6
2 | 1
2
1 | Minor Watercourse
Minor Watercourse
Minor Watercourse
Minor Watercourse | 6 95.22
6 78.03
6 35.83
6 46.65 | 3
3
3 | -0.06 1 0.04 1 3.16 1 1.28 1 | 18
18
18
18 | 3
3
3 | 3
6
3
3 | | 1364 291235.4 962897
1365 291259.9 962962
1366 291261.7 962941 | 3.6 2
13.6 6
6.1 4 | 0.5 1
0.7 2
1.2 3 | G
R
R | 1
1.5
1.5 | 2
18
18 | 1 3 3 | Important Habitat
Minor Watercourse
Minor Watercourse | 8 38.08
6 9.79
6 2.35 | 3
4
4 | -2.30 1
1.66 1
0.16 1 | 24
24
24 | 3
3
3 | 3
9
9 | | 1367 291262.9 962928
1368 291277.9 962910
1369 291326.8 962924
1370 291309.9 962942 | 6.7 4
5.1 4
12.7 6
13.2 6 | 0.8 2
1.7 3
0.5 1
0.5 1 | R
G
G
R | 1.5
1
1
1.5 | 12
12
6
9 | 2
2
2
2 | Minor Watercourse
Minor Watercourse
Minor Watercourse
Minor Watercourse | 6 12.14
6 17.64
6 26.81
6 27.07 | 3
3
3 | 0.91 1
0.66 1
5.18 1
6.50 1 | 18
18
18
18 | 3
3
3
3 | 6
6
6 | | 1371 291299.8 962960
1372 291341.8 962993
1373 291363.8 962973
1374 291379.9 962953 | 9.8 6
5.0 4
3.4 2
2.7 2 | 0.4 1
0.5 1
0.4 1
0.3 1 | R
R
G
G | 1.5
1.5
1 | 9
6
2
2 | 2
2
1 | Minor Watercourse
Minor Watercourse
Minor Watercourse
Minor Watercourse | 6 33.72
6 86.12
6 88.02
6 84.71 | 3
3
3
3 | 7.78 1
12.55 2
12.23 2
12.46 2 | 18
18
18
18 | 3
3
3
3 | 6
6
3
3 | | 1375 291237.9 963005
1376 291223.3 963029
1377 291207.7 963052
1378 291179.1 962990 | 10.9 6
8.3 6
8.6 6
5.2 4 | 0.6 2
0.2 1
0.2 1 | R
R
R | 1.5
1.5
1.5
1 | 18
9
9 | 3
2
2 | Minor Watercourse
Important Habitat
Important Habitat
Minor Watercourse | 6 24.49
8 3.25
8 2.90
6 21.50 | 3
4
4 | 4.02 1
0.47 1
0.30 1
0.19 1 | 18
32
32
18 | 3
5
5 | 9
10
10
3 | | 1379 291166.1 963009
1380 291152.0 963027
1381 291095.5 963010 | 3.8 2
3.4 2
3.3 2 | 0.3 1
1.3 3
0.1 1 | R
G
R | 1.5
1
1.5 | 3
6
3 | 1
2
1 | Minor Watercourse
Minor Watercourse
Minor Watercourse | 6 16.66
6 10.28
6 38.61 | 3
3
3 | -0.40 1
-0.44 1
-0.86 1 | 18
18
18 | 3
3
3 | 3
6
3 | | 1382 291100.8 962986
1383 291109.5 962961
1384 291059.6 962944
1385 291045.6 962965 | 4.4 4
7.3 4
3.2 2
3.7 2 | 0.1 1 1 1 0.4 1 0.4 1 0.2 1 | G
G
G | 1
1
1 | 4
4
2
2 | 1
1
1 | Minor Watercourse
Minor Watercourse
Wind Turbine
Minor Watercourse | 6 58.84
6 79.97
6 93.39
6 104.45 | 3
3
3 | -1.49 1
-1.82 1
1.40 1
-4.27 1 | 18
18
18
18 | 3
3
3
3 | 3
3
3 | | 1386 291032.7 962984
1387 290917.5 962949
1388 290880.3 962900
1389 290869.9 962912 | 2.1 2
2.4 2
8.2 6
7.6 4 | 0.3 1
0.6 2
0 1 | G
G
R | 1
1
1.5 | 2
4
9 | 1
1
2 | Minor Watercourse
Tracks or Paths
Tracks or Paths
Tracks or Paths | 6 96.26
2 46.52
2 5.78
2 13.63 | 3
3
4
3 | -1.52 1
0.48 1
-0.75 1
1.32 1 | 18
6
8 | 3
1
2 | 3
1
4 | | 1390 290886.1 962889
1391 290831.0 962879
1392 290837.8 962866 | 5.4 4
5.8 4
5.6 4 | 0.3 1
0 1
0.2 1 | R
R
G | 1.5
1.5
1 | 6
6
4 | 2
2
1 | Tracks or Paths
Tracks or Paths
Tracks or Paths | 2 14.08
2 4.24
2 12.49 | 3
4
3 | 0.10 1
-0.43 1
0.51 1 | 6
8
6 | 1
2
1 | 2 4 1 | | 1393 290819.9 962892
1394 290775.2 962855
1395 290779.9 962842
1396 290769.9 962872 | 5.6 4
5.7 4
6.8 4
5.4 4 | 0.2 1
0 1
0.2 1
0.3 1 | G
R
G
R | 1
1.5
1
1.5 | 4
6
4
6 | 1
2
1
2 | Tracks or Paths
Tracks or Paths
Tracks or Paths
Tracks or Paths | 2 19.39
2 5.51
2 11.38
2 21.32 | 3
4
3
3 | -1.00 1
-0.51 1
-0.03 1
-1.03 1 | 6
8
6
6 | 1
2
1
1 | 1
4
1
2 | | 1397 290734.8 962838
1398 290739.9 962822
1399 290729.9 962852
1400 290682.4 962834 | 7.3 4
7.3 4
6.3 4
3.3 2 | 0 1
0.6 2
0.3 1
0 1 | R
G
G | 1.5
1
1
1.5 | 6
8
4
3 | 2
2
1
1 | Tracks or Paths
Tracks or Paths
Tracks or Paths
Tracks or Paths | 2 4.56
2 12.28
2 19.39
2 2.29 | 4
3
3
4 | 0.08 1
0.28 1
-0.33 1
0.13 1 | 8
6
6
8 | 2
1
1
2 | 4
2
1
2 | | 1401 290689.9 962852
1402 290675.3 962817
1403 290659.9 962842
1404 290613.8 962876 | 3.3 2
3.3 2
3.3 2
2.3 2 | 0.2 1
0.2 1
0.4 1 | G
G
R | 1
1
1.5 | 2
2
3 | 1
1
1 | Tracks or Paths
Tracks or Paths
Tracks or Paths
Tracks or Paths | 2 19.20
2 16.99
2 5.54
2 7.08 | 3
3
4 | 0.46 1
-0.45 1
-0.32 1
-0.23 1 | 6
6
8 | 1
1
2
2 | 1
1
2 | | 1405 290575.9 962903
1406 290644.9 962823
1407 290629.0 962801 | 2.8 2
2.7 2
2.4 2 | 0.2 1
1 2
0.5 1 | G
G
R | 1
1
1.5 | 2
4
3 | 1 1 | Tracks or Paths
Tracks or Paths
Tracks or Paths | 2 4.33
2 26.77
2 54.30 | 4
3
3 | -0.20 1
-0.31 1
-1.31 1 | 8
6
6 | 2
1
1 | 2 1 1 | | 1408 290584.2 962833
1409 290544.8 962862
1410 290562.7 962885
1411 290624.9 962867 | 3.7 2
1.7 1
3.1 2
2.6 2 | 0.5 1
0.6 2
0 1 | G
R
G
R | 1
1.5
1
1.5 | 1.5
4
3 | 1
1
1 | Tracks or Paths
Tracks or Paths
Tracks or Paths
Tracks or Paths | 2 54.09
2 52.20
2 24.22
2 0.96 | 3
3
3
4 | -1.90 1
-1.43 1
-0.68 1
-0.01 1 | 6
6
8 | 1
1
1
2 | 1
1
2 | | 1412 290619.9 962852
1413 290629.9 962882
1414 290584.3 962900
1415 290590.8 962910 | 4.2 4
2.3 2
2.4 2
2.5 2 | 0.2 1
0.2 1
0 1
0.1 1 | R
R
R | 1.5
1.5
1.5
1.5 | 6
3
3
3 | 2
1
1 | Tracks or Paths
Tracks or Paths
Tracks or Paths
Tracks or Paths | 2 17.24
2 12.93
2 2.44
2 12.49 | 3
3
4
3 | 0.37 1
0.47 1
-0.01 1
0.50 1 | 6
6
8
6 | 1
1
2
1 | 2
1
2
1 | | 1416 290576.6 962891
1417 290533.9 962915
1418 290532.5 962927
1419 290534.5 962902 | 3.2 2
2.7 2
3.1 2
3.3 2 | 0.1 1 0 1 0.1 1 0.5 1 1 | R
R
G
R | 1.5
1.5
1
1.5 | 3
3
2
3 | 1
1
1 | Tracks or Paths
Tracks or Paths
Tracks or Paths
Tracks or Paths | 2 10.95
2 3.18
2 9.63
2 16.13 | 3
4
4
3 | -0.45 1
-0.08 1
0.16 1
-0.09 1 | 6
8
8
6 | 1
2
2
1 | 1
2
2 | | 1420 290486.0 962907
1421 290479.9 962922
1422 290489.9 962892
1423 290432.1 962898 | 4.0 4
4.7 4
4.7 4
6.7 4 | 0 1
0 1
0.1 1 | R
G
G | 1.5
1
1
1.5 | 6
4
4 | 2
1
1 | Tracks or Paths
Tracks or Paths
Tracks or Paths
Tracks or Paths | 2 6.09
2 10.16
2 15.08
2 3.14 | 3 3 | -0.57 1 0.12 1 0.98 1 -0.37 1 | 8
6
6 | 2
1
1 | 4
1
1 | | 1424 290429.9 962912
1425 290435.0 962881
1426 290386.7 962890 | 6.5 4
6.0 4
4.4 4 | 0 1
0.3 1
0 1 | G
R
R | 1
1.5
1.5 | 4
6
6 | 1 2 2 | Tracks or Paths
Tracks or Paths
Tracks or Paths | 2 14.65
2 16.78
2 6.83 | 3 3 4 | -0.31 1
-0.56 1
0.52 1 | 6
6
8 | 1
1
2 | 1
2
4 | | 1427 290389.7 962877
1428 290383.3 962902
1429 290329.7 962920
1430 290329.9 962902 | 4.4
4.4
3.2
2
3.4
2 | 0.4 1
0.2 1
0.3 1
0.3 1 | G
G
G | 1
1
1 | 4
4
2
2 | 1
1
1 | Tracks or Paths
Tracks or Paths
Tracks or Paths
Tracks or Paths | 2 14.29
2 13.78
2 49.50
2 34.67 | 3
3
3 | 0.40 1
0.57 1
-0.15 1
-0.96 1 | 6
6
6 | 1
1
1 | 1
1
1 | | 1431 290330.8 962881
1432 290279.9 962912
1433 290279.4 962893
1434 290279.9 962932 | 4.4 4
3.0 2
3.3 2
3.2 2 | 0.2 1
0.3 1
0.1 1
0.1 1 | G
R
G
G | 1
1.5
1
1 | 4
3
2
2 | 1
1
1 | Tracks or Paths
Tracks or Paths
Tracks or Paths
Tracks or Paths | 2 16.32
2 70.52
2 54.13
2 87.73 | 3
3
3
3 | -0.22 1
1.73 1
0.79 1
0.11 1 | 6
6
6 | 1
1
1
1 | 1
1
1 | | 1435 290229.9 962952
1436 290231.1 962924
1437 290229.9 962902
1438 290179.9 962912 | 3.0 2
3.9 2
1.5 1
3.2 2 | 0.2 1
0.2 1
0.1 1
0.9 2 | R
G
G | 1.5
1
1
1.5 | 3
2
1
6 | 1
1
1
2 | Tracks or Paths
Tracks or Paths
Tracks or Paths
Tracks or Paths | 2 130.94
2 105.77
2 88.20
2 122.55 | 3
3
3 | 1.69 1
1.22 1
0.10 1
-0.57 1 | 6
6
6 | 1
1
1 | 1
1
1
2 | | 1439 290178.4 962935
1440 290179.7 962958
1441 290130.6 962907
1442 290130.0 962929 | 3.7 2
3.5 2
1.5 1 | 0.3 1
0.1 1
2.6 3 | R
G
G | 1.5
1
1
1.5 | 3
2
3
4.5 | 1
1
1 | Tracks or Paths
Tracks or Paths
Minor Watercourse
Minor Watercourse | 2 142.38
2 161.77
6 130.37
6 152.55 | 3
3
3 | -1.02 1
-0.33 1
1.21
1
1.66 1 | 6
6
18
18 | 1
1
3 | 1
1
3 | | 1443 290129.9 962952
1444 290080.2 962949
1445 290080.8 962931
1446 290076.4 962928 | 0.8 1
0.6 1
0.5 1
0.6 1 | 2.5 3
0.3 1
0.6 2
0.5 1 | R
G
R | 1.5
1
1
1.5 | 4.5
1
3 | 1
1
1 | Minor Watercourse
Minor Watercourse
Minor Watercourse | 6 174.86
6 180.63
6 167.67
6 167.04 | 3 3 3 | 2.07 1
12.13 2
1.62 1
1.58 1 | 18
18
18
18 | 3 3 3 | 3
3
3 | | 1447 290079.9 962912
1448 290030.7 962926
1449 290050.0 962927 | 1.1 1
5.3 4
2.2 2 | 1.2 3
0.1 1
0.1 1 | G
G
G | 1 1 1 | 3
4
2 | 1 1 | Minor Watercourse
Minor Watercourse
Minor Watercourse
Minor Watercourse | 6 151.06
6 135.72
6 154.21 | 3 3 3 | 1.45 1
10.62 2
12.14 2 | 18
18
18 | 3 3 3 | 3 3 3 | | 1450 290024.2 962925
1451 290032.3 962903
1452 289979.9 962902
1453 289982.3 962926 | 5.4 4
4.2 4
6.7 4
1.8 1 | 0.1 1
0.1 1
0.1 1
0.1 1 | G
G
G
G | 1
1
1 | 4
4
4
1 | 1
1
1 | Minor Watercourse
Minor Watercourse
Minor Watercourse
Minor Watercourse | 6 129.75
6 145.17
6 100.56
6 90.10 | 3
3
3
3 | 10.07 2
10.90 2
8.96 1
7.26 1 | 18
18
18
18 | 3
3
3
3 | 3
3
3 | | 1454 289974.1 962921
1455 289918.7 962923
1456 289939.9 962922
1457 290029.9 962872 | 3.2 2
7.6 4
8.8 6
2.9 2 | 0.1 1 0 1 0 1 0 1 0.1 1 0.1 1 1 | G
G
G | 1
1
1 | 2
4
6
2 | 1
1
2
1 | Minor Watercourse
Minor Watercourse
Minor Watercourse
Tracks or Paths | 6 84.89
6 44.56
6 57.31
2 130.94 | 3
3
3
3 | 7.24 1
4.12 1
6.65 1
-0.77 1 | 18
18
18
6 | 3
3
3
1 | 3
3
6
1 | | 1458 290029.3 962825
1459 290054.7 962826
1460 290079.3 962827
1461 290079.1 962880 | 2.8 2
2.3 2
1.7 1 | 0.1 1 1 0.2 1 1 0.1 1 1 0.9 2 2 | 6
6
6 | 1
1
1 | 2
2
1
2 | 1
1
1 | Tracks or Paths
Tracks or Paths
Tracks or Paths
Minor Watercourse | 2 91.07
2 79.47
2 73.78
6 124.60 | 3
3
3 | 0.72
0.46
1
-0.32
0.88
1 | 6
6
6
18 | 1
1
1
3 | 1
1
1
3 | | 1462 290910.1 962432
1463 290919.7 962431
1464 290919.8 962421
1465 290919.8 962401 | 1.7 1
3.2 2
2.7 2
2.4 2 | 1 2 0.5 1 0.2 1 0.8 2 | G
G
G | 1
1
1 | 2
2
2
4 | 1
1
1 | Important Habitat
Important Habitat
Important Habitat
Important Habitat | 8 1.35
8 4.78
8 4.89
8 1.67 | 4
4
4 | 0.03 1
0.26 1
0.20 1
0.05 1 | 32
32
32
32
32 | 5
5
5 | 5
5
5 | | 1466 290920.1 962392
1467 290919.6 962382
1468 290919.6 962371
1469 290919.7 962362 | 2.5 2
2.0 1
1.1 1 | 0.4 1
0.8 2
1.2 3 | G
G
R | 1
1
1.5 | 2
2
4.5 | 1 1 | Important Habitat
Important Habitat
Important Habitat
Important Habitat | 8 1.18
8 1.63
8 1.90
8 1.14 | 4 4 4 | 0.04 1
0.03 1
-0.03 1
-0.02 1 | 32
32
32 | 5
5
5 | 5
5
5 | | 1470 290919.3 962352
1471 290919.7 962342
1472 290910.4 962342 | 1.2 1
1.4 1
1.6 1 | 1.3 3
1.3 3
1.5 3
0.6 2 | G
G
G | 1 1 1 1 | 3
3
2 | 1
1
1 | Important Habitat
Important Habitat
Important Habitat | 8 1.27
8 1.41
8 0.63 | 4
4
4 | -0.03 1
-0.03 1
-0.01 1 | 32
32
32
32 | 5
5
5 | 5
5
5 | | 1473 290908.6 962352
1474 290909.6 962362
1475 290909.7 962372
1476 290910.6 962382 | 1.3
1.2
1.2
1.2
2.3
2 | 1 2
1.6 3
1.6 3
1.3 3 | R
R
G | 1
1.5
1.5
1 | 2
4.5
4.5
6 | 1
1
1
2 | Important Habitat
Important Habitat
Important Habitat
Important Habitat | 8 1.90
8 1.44
8 1.38
8 1.24 | 4
4
4
4 | -0.04 1
-0.03 1
-0.02 1
0.05 1 | 32
32
32
32
32 | 5
5
5
5 | 5
5
5
10 | | 1477 290909.9 962391
1478 290910.0 962402
1479 290908.6 962411
1480 290910.0 962422 | 2.5 2
1.9 1
0.8 1
1.3 1 | 1.1 3
1 2
0.9 2
0.8 2 | G
G
G | 1
1
1 | 6
2
2
2 | 2
1
1 | Important Habitat
Important Habitat
Important Habitat
Important Habitat | 8 2.21
8 1.49
8 2.64
8 1.51 | 4
4
4
4 | 0.07 1
0.04 1
0.02 1
0.04 1 | 32
32
32
32 | 5
5
5 | 10
5
5
5 | | 1481 290900.5 962421
1482 290899.8 962412
1483 290929.3 962420
1484 290928.9 962412 | 0.8 1
0.7 1
3.2 2
3.1 2 | 0.9 2
0.8 2
0.3 1
0.3 1 | G
G
R
G | 1
1
1.5
1 | 2
2
3
2 | 1
1
1 | important Habitat
Important Habitat
Important Habitat
Important Habitat | 8 2.28
8 0.88
8 11.14
8 8.80 | 4
4
3
4 | 0.03 1
0.01 1
-0.62 1
0.48 1 | 32
32
32
24
32 | 5
5
3
5 | 5
5
5
3 | | 1485 290930.0 962401
1486 290930.8 962391 | 2.6
2.5
2.5 | 0.2
0.3
1 | G
R | 1
1.5 | 2 3 | 1 1 | Important Habitat
Important Habitat | 8 5.09
8 5.84 | 4 4 | 0.22 1
0.20 1 | 32
32 | 5 | 5 | | 1487 290929.9 962382 | 1.7 | 1 | 0.3 | 1 | [G | 1 | 1 | 1 | Important Habitat | 8 | 4.88 4 | 0.14 1 | 32 | 5 | 5 | |--|-------------------|--------|-------------------|--------|--------|-----------------|-----------------|--------|---|-------------|-------------------------------|-------------------------------|----------------|--------|--------------| | 1488 290930.5 962371
1489 290929.7 962361 | 1.2 | 1 | 0.2 | 1 2 | G
G | 1 | 1 2 | | Important Habitat
Important Habitat | 8 | 2.20 4
1.85 4 | -0.02 1
-0.03 1 | 32
32 | 5
5 | 5 | | 1490 290929.5 962351
1491 290929.9 962341 | 1.3 | 1 | 1.2 | 3 | G | 1 | 3 | | Important Habitat
Important Habitat | 8 | 1.90 4
1.88 4 | -0.03 1
-0.03 1 | 32
32 | 5 | 5 | | 1492 290899.8 962342
1493 290898.2 962352
1494 290900.3 962332 | 1.5 | 1 | 1.7
2
1.5 | 3 | R | 1
1.5
1 | 4.5
2 | | Important Habitat
Important Habitat
Important Habitat | 8 | 0.86 4
2.51 4
0.76 4 | -0.02 1
-0.06 1
-0.01 1 | 32
32
32 | 5 | 5 | | 1495 290899.8 962363
1496 290900.4 962371 | 1.2 | 1 | 2 | 3 | 9 | 1 | 3 | | Important Habitat
Important Habitat | 8 | 0.64 4
2.17 4 | -0.01 1
-0.01 1 | 32
32
32 | 5 | 5 | | 1497 290900.4 962381
1498 290899.8 962391 | 2.3 | 2 | 1.5
1.2 | 3 | G | 1 | 6 | 2 2 | Important Habitat
Important Habitat | 8 | 2.21 4
1.65 4 | 0.08 1
0.04 1 | 32
32 | 5 | 10
10 | | 1499 290899.5 962402
1500 290889.2 962431 | 0.7
0.8 | 1 | 0.6
1.3 | 2 | G
G | 1
1 | 2 3 | | Important Habitat
Important Habitat | 8 | 1.07 4
2.31 4 | 0.01 1
0.03 1 | 32
32 | 5
5 | 5 | | 1501 290890.0 962421
1502 290889.5 962412 | 0.8
0.7 | 1 | 1.3
1.1 | 3 | R
G | 1.5
1 | 4.5
3 | | Important Habitat
Important Habitat | 8 | 1.88 4
1.71 4 | 0.02 1
0.02 1 | 32
32 | 5
5 | 5 5 | | 1503 290889.3 962401
1504 290890.4 962381 | 0.5
2.2 | 1
2 | 1
1.2 | 2 3 | G
G | 1
1 | 2
6 | | Important Habitat
Important Habitat | 8 | 1.83 4
1.92 4 | 0.01 1
0.07 1 | 32
32 | 5
5 | 5
10 | | 1505 290889.5 962371
1506 290889.9 962361 | 1.2
1.3 | 1 | 1.3
1.8 | 3 | G
G | 1
1 | 3
3 | | Important Habitat
Important Habitat | 8 | 2.09 4
2.44 4 | -0.01 1
0.03 1 | 32
32 | 5
5 | 5
5 | | 1507 290890.6 962352
1508 290890.3 962342 | 1.6 | 1 | 2.1 | 3 | R
G | 1.5 | 4.5
3 | | Important Habitat
Important Habitat | 8 8 | 1.49 4
1.36 4 | -0.02 1
-0.02 1 | 32
32 | 5 5 | 5 | | 1509 290889.5 962333
1510 290880.1 962332
1511 290880.0 962342 | 1.3 | 1 | 1.7
2
1.2 | 3 | G
R | 1
1.5
1.5 | 3
4.5
4.5 | | Important Habitat
Important Habitat
Important Habitat | 8 | 0.84 4
1.10 4
1.39 4 | -0.02 1
-0.01 1
-0.03 1 | 32
32
32 | 5 | 5 | | 1511 290800.0 962342
1512 290879.8 962352
1513 290880.1 962362 | 1.6 | 1 | 2.2
1.2 | 3 | G
G | 1 1 | 4.5
3
3 | | Important Habitat
Important Habitat | 8 8 | 1.38 4
1.50 4 | -0.03 1
-0.03 1 | 32
32
32 | 5 | 5 | | 1514 290879.8 962372
1515 290880.0 962382 | 1.4 | 1 | 0.2 | 1 | G | 1 | 1 | | Important Habitat
Important Habitat | 8 | 1.09 4
1.35 4 | 0.01 1
0.02 1 | 32
32 | 5 | 5 | | 1516 290880.4 962392
1517 290880.5 962402 | 0.6
0.5 | 1 | 0.3
0.8 | 1 2 | G
G | 1
1 | 1 2 | | Important Habitat
Important Habitat | 8 | 1.23 4
1.04 4 | 0.01 1
0.01 1 | 32
32 | 5
5 | 5
5 | | 1518 290869.4 962341
1519 290869.9 962352 | 1.5
1.4 | 1 | 3.5
1.6 | 8 | G
G | 1
1 | 8
3 | | Important Habitat
Important Habitat | 8 | 1.86 4
1.33 4 | -0.05 1
-0.03 1 | 32
32 | 5
5 | 10
5 | | 1520 290870.5 962361
1521 290859.5 962361 | 1.5
1.8 | 1 | 2
2.8 | 3 | G
G | 1
1 | 3
3 | | Important Habitat
Important Habitat | 8 | 3.38 4
8.19 4 | 0.07 1
0.30 1 | 32
32 | 5
5 | 5
5 | | 1522 290860.1 962353
1523 290861.2 962341 | 2.6
1.9 | 1 | 2.4 | 3 | G | 1 | 6
3 | | Important Habitat
Important Habitat | 8 | 0.27 4
2.23 4 | 0.01 1
-0.09 1 | 32
32 | 5 5 | 5 | | 1524 290849.9 962342
1525 290850.1 962351
1526 290850.1 962361 | 2.8
1.4 | 2 | 0.6
2
2.3 | 3 | G | 1
1
1.5 | 4
6
4.5 | | Important Habitat
Important Habitat
Important Habitat | 8 | 1.21 4
3.10 4
12.82 3 | -0.02 1
0.11 1
0.48 1 | 32
32
24 | 5 | 10 | | 1527 290839.6 962352
1528 290840.3 962342 | 1.5 | 1 | 1.2
0.6 | 3 | 6 | 1 | 3 8 | | Important Habitat
Important Habitat | 8 | 3.70 4
1.02 4 | 0.14 1
0.01 1 | 32
32 | 5 | 5 | | 1529 290870.5 962371
1530 290869.5 962383 | 0.7 | 1 | 1 0.3
| 2 | G | 1 | 2 | | Important Habitat
Important Habitat | 8 | 5.34 4
10.69 3 | -0.07 1
-0.04 1 | 32
24 | 5 | 5 | | 1531 290870.1 962391
1532 290869.8 962400 | 0.7
0.7 | 1 | 0.1
1.1 | 1 3 | R
G | 1.5
1 | 1.5
3 | | Important Habitat
Important Habitat | 8 | 5.66 4
2.25 4 | 0.00 1
-0.02 1 | 32
32 | 5
5 | 5
5 | | 1533 290869.5 962412
1534 290880.0 962412 | 0.6
0.7 | 1 | 1.3
1.1 | 3 | G
G | 1
1 | 3
3 | | Important Habitat
Important Habitat | 8 | 1.73 4
1.38 4 | 0.01 1
0.02 1 | 32
32 | 5
5 | 5
5 | | 1535 290880.4 962423
1536 290870.1 962422 | 0.7
0.5 | 1 | 1.5
1.4 | 3
3 | G
R | 1
1.5 | 3
4.5 | | Important Habitat
Important Habitat | 8 | 4.56 4
1.00 4 | -0.06 1
0.01 1 | 32
32 | 5
5 | 5
5 | | 1537 290869.6 962432
1538 290880.6 962433 | 0.5 | 1 | 1 1.2 | 3 | G
R | 1 1.5 | 2
4.5 | | Important Habitat
Important Habitat | 8 | 5.87 4
4.63 4 | -0.01 1
0.01 1 | 32
32 | 5
5 | 5 | | 1539 290859.6 962432
1540 290859.6 962421 | 0.6
0.6 | 1 | 0.4
1.4
1.9 | 3 | R
G | 1.5
1 | 1.5
3 | | Important Habitat
Important Habitat | 8 | 1.04 4
1.89 4
0.83 4 | 0.00 1
0.00 1
-0.01 1 | 32
32
32 | 5 | 5 | | 1541 290859.5 962413
1542 290858.8 962402
1543 290859.7 962392 | 1.1 | 1 | 1.9
1.5
1.8 | 3 | G | 1 1 1 | 3 | | Important Habitat
Important Habitat
Important Habitat | 8 | 1.80 4
6.56 4 | 0.00 1
0.00 1 | 32
32
32 | 5 | 5 | | 1544 290859.9 962382
1545 290849.8 962372 | 0.8 | 1 | 1.7 | 3 8 | G
R | 1
1.5 | 3
12 | 1 | Important Habitat
Important Habitat | 8 | 16.19 3
21.32 3 | 0.16 1
0.15 1 | 24
24 | 3 | 3 | | 1546 290851.2 962380
1547 290849.1 962391 | 1.1 | 1 | 4.2 | 8 | R
R | 1.5
1.5 | 12
4.5 | | Important Habitat
Important Habitat | 8 | 20.60 3
12.96 3 | 0.11 1
-0.03 1 | 24
24 | 3 3 | 6 | | 1548 290849.1 962401
1549 290848.3 962411 | 1.2
0.7 | 1 | 2.5
2.4 | 3 | R
R | 1.5
1.5 | 4.5
4.5 | | Important Habitat
Important Habitat | 8 | 6.39 4
2.54 4 | -0.07 1
-0.02 1 | 32
32 | 5
5 | 5
5 | | 1550 290849.9 962422
1551 290849.1 962432 | 0.7
0.6 | 1 | 1.1 | 3
2 | G
G | 1
1 | 3
2 | | Important Habitat
Important Habitat | 8 | 1.34 4
6.26 4 | 0.00 1
-0.04 1 | 32
32 | 5
5 | 5
5 | | 1552 291191.1 962241
1553 291189.8 962251 | 7.8
7.2 | 4 | 0.5
0.3 | 1 | G
G | 1 | 4 | | Wind Turbine
Important Habitat | 6
8 | 63.34 3
69.05 3 | -4.41 1
-5.13 1 | 18
24 | 3 3 | 3 3 | | 1554 291200.3 962252
1555 291210.0 962252 | 5.7 | 4 | 0.3
0.4
0.2 | 1 | G | 1 | 4 | | Important Habitat
Important Habitat | 8 | 59.92 3
51.10 3
42.06 3 | -4.05 1
-3.20 1 | 24
24
24 | 3 | 3 | | 1556 291220.7 962252
1557 291229.5 962251
1558 291239.2 962251 | 5.3 | 4 | 0.2
0.2
0.3 | 1 | R | 1.5
1 | 6 | | Important Habitat
Important Habitat
Important Habitat | 8 | 34.71 3
26.12 3 | -2.27 1
-1.50 1
-1.95 1 | 24
24
24 | 3 | 3
6
3 | | 1558 291239.2 962251
1559 291249.9 962251
1560 291260.5 962252 | 6.0 | 4 4 2 | 0.5 | 1 2 | G
R | 1
1
1.5 | 4 4 | | Important Habitat
Important Habitat
Important Habitat | 8 8 | 15.38 3
4.88 4 | -0.92 1
-0.15 1 | 24
24
32 | 3 5 | 3 | | 1561 291269.3 962252
1562 291280.7 962252 | 1.6
1.6 | 1 | 1.1
1.2 | 3 | R
G | 1.5 | 4.5
3 | | Important Habitat
Important Habitat | 8 | 1.56 4
1.33 4 | -0.03 1
0.01 1 | 32
32 | 5 | 5 5 | | 1563 291279.7 962242
1564 291280.3 962232 | 1.6
1.8 | 1 | 1.5
1.1 | 3 | R
G | 1.5
1 | 4.5
3 | | Important Habitat
Important Habitat | 8 8 | 1.47 4
1.09 4 | -0.02 1
0.00 1 | 32
32 | 5
5 | 5 | | 1565 291268.8 962232
1566 291270.6 962241 | 5.0
2.2 | 4
2 | 0.6
1.6 | 2 3 | G
G | 1
1 | 8
6 | | Important Habitat
Important Habitat | 8 | 1.87 4
1.62 4 | -0.18 1
0.00 1 | 32
32 | 5
5 | 10
10 | | 1567 291258.7 962241
1568 291259.9 962231 | 5.7
4.2 | 4
4 | 0.8
0.5 | 2
1 | G
G | 1
1 | 8
4 | | Important Habitat
Important Habitat | 8 | 8.43 4
1.68 4 | 0.33 1
-0.06 1 | 32
32 | 5
5 | 10
5 | | 1569 291250.3 962232
1570 291240.2 962232 | 2.6 | 2 | 0.7
0.2 | 1 | 6 | 1 | 2 | | Important Habitat
Important Habitat | 8 8 | 6.35 4
15.48 3
20.30 3 | -0.27 1
-0.65 1
-0.87 1 | 32
24 | 5
3 | 3 | | 1571 291239.8 962241
1572 291229.1 962241
1573 291229.1 962232 | 4.7 | 4 | 1.2
0.3 | 3 | R | 1.5 | 18 | | Important Habitat
Important Habitat
Important Habitat | 8 | 29.12 3
25.48 3 | -0.87 1
-1.50 1
-1.39 1 | 24
24
24 | 3 | 3
9
3 | | 1574 291219.5 962232
1575 291219.5 962242 | 7.2 | 4 | 0.9 | 2 | 9 | 1 | 8
12 | 2 | Important Habitat
Important Habitat | 8 | 33.82 3
38.22 3 | -2.52 1
-2.35 1 | 24
24
24 | 3 | 6 | | 1576 291210.0 962242
1577 291190.0 962232 | 5.8
7.4 | 4 | 0.9 | 2 2 | G
G | 1 | 8 8 | | Important Habitat
Wind Turbine | 8 6 | 46.90 3
58.66 3 | -3.25 1
-5.23 1 | 24
18 | 3 | 6 | | 1578 291199.8 962242
1579 291199.1 962232 | 7.5
8.2 | 4
6 | 0.7
0.3 | 2
1 | G
R | 1
1.5 | 8
9 | | Important Habitat
Wind Turbine | 8
6 | 55.69 3
51.45 3 | -4.38 1
-4.10 1 | 24
18 | 3
3 | 6
6 | | 1580 291209.6 962232
1581 291279.3 962222 | 7.9
3.6 | 4
2 | 0.3
0.7 | 1
2 | G
G | 1
1 | 4 | | Important Habitat
Important Habitat | 8 | 42.93 3
1.59 4 | -3.84 1
-0.09 1 | 24
32 | 3
5 | 3
5 | | 1582 291290.1 962222
1583 291289.0 962212 | 2.0 | 1 2 | 0.8 | 3 | G | 1 | 6 | | Important Habitat
Important Habitat | 8 8 | 1.40 4
1.97 4 | -0.01 1
-0.05 1 | 32
32 | 5 5 | 10 | | 1584 291289.6 962202
1585 291289.7 962192
1586 291290.2 962181 | 1.9 | 1 | 2.1 | 3 | R | 1.5
1.5
1 | 4.5
4.5 | | Important Habitat
Important Habitat
Important Habitat | 8
8
8 | 1.50 4
4.68 4
12.06 3 | -0.05 1
0.04 1
0.00 1 | 32
32
24 | 5 | 5 | | 1587 291289.9 962171
1588 291280.1 962151 | 3.2 | 2 | 1.7 | 3 | R
G | 1.5 | 9 | 2 | Important Habitat
Important Habitat | 8 8 | 19.26 3
36.76 3 | -0.33 1
-2.08 1 | 24
24
24 | 3 | 6 | | 1589 291280.3 962162
1590 291279.6 962172 | 6.6
3.4 | 4 2 | 0.7
1.2 | 2 3 | G
G | 1
1 | 8 | 2
2 | Important Habitat
Important Habitat | 8 | 26.56 3
16.53 3 | -1.12 1
-0.58 1 | 24
24 | 3 3 | 6 | | 1591 291279.6 962182
1592 291280.0 962192 | 2.1
1.6 | 2
1 | 0.8
0.7 | 2 2 | R
R | 1.5
1.5 | 6
3 | | Important Habitat
Important Habitat | 8 8 | 6.60 4
1.48 4 | -0.22 1
-0.04 1 | 32
32 | 5
5 | 10
5 | | 1593 291279.7 962212
1594 291270.2 962222 | 2.5
3.2 | 2 2 | 1.1
0.4 | 3 1 | R
G | 1.5
1 | 9 2 | | Important Habitat
Important Habitat | 8 | 1.42 4
1.43 4 | -0.01 1
0.00 1 | 32
32 | 5 | 10
5 | | 1595 291269.8 962212
1596 291269.6 962203
1597 291270.2 962192 | 2.3 | 2 | 1.5 | 3 | 6 | 1 1 | 6 | | Important Habitat
Important Habitat | 8 8 | 1.34 4
0.84 4 | 0.00 1
-0.03 1
-0.23 1 | 32
32
32 | 5 | 5
10 | | 1597 291270.2 962192
1598 291269.9 962182
1599 291270.2 962171 | 2.2
4.3
7.9 | 4 | 0.4
0.3
0.9 | 1 2 | G
G | 1
1
1 | 4 8 | 1 1 2 | Important Habitat
Important Habitat
Important Habitat | 8
8
8 | 7.87 4
12.16 3
19.43 3 | -0.23 1
-0.38 1
-1.27 1 | 32
24
24 | 3 | 5
3 | | 1599 291270.2 962171
1600 291269.9 962161
1601 291270.3 962152 | 7.9
8.8
7.0 | 6 | 0.9
0.7
0.3 | 2 1 | G
G | 1
1
1 | 8
12
4 | | Important Habitat
Important Habitat
Important Habitat | 8
8
8 | 19.43 3
28.73 3
37.60 3 | -1.27 1
-2.48 1
-3.47 1 | 24
24
24 | 3 3 | 6
6
3 | | 1602 291259.9 962151
1603 291260.0 962161 | 5.1
6.6 | 4
4 | 0.6
0.3 | 2
1 | G
R | 1
1.5 | 8
6 | | Important Habitat
Important Habitat | 8 | 42.20 3
33.59 3 | -4.06 1
-3.20 1 | 24
24 | 3 3 | 6 | | 1604 291259.3 962172
1605 291259.1 962182 | 7.2
6.7 | 4 | 0.3
0.3 | 1
1 | G
G | 1 1 | 4 4 | | Important Habitat
Important Habitat | 8 8 | 25.94 3
16.99 3 | -1.27 1
-0.53 1 | 24
24 | 3 | 3 | | 1606 291259.8 962192
1607 291259.6 962211 | 4.1
2.3 | 4 | 0.2
0.6 | 1 2 | G
G | 1 | 4 | | Important Habitat
Important Habitat | 8 | 7.61 4
1.88 4 | 0.11 1
0.00 1 | 32
32 | 5
5 | 5
5 | | 1608 291258.3 962222
1609 291249.7 962222 | 2.5 | 2 | 0.4
0.3 | 1 | R
R | 1.5
1.5 | 3 | | Important Habitat
Important Habitat | 8 | 2.39 4
3.91 4 | -0.04 1
-0.10 1 | 32
32 | 5
5 | 5 | | 1610 291249.2 962211
1611 291250.1 962201
1612 291249.9 962192 | 2.7
4.5
6.0 | 4 | 0.5
1
0.5 | 1 2 | 6 | 1
1
1 | 8 | | Important Habitat
Important Habitat
Important Habitat | 8
8
8 | 2.05 4
1.86 4
8.09 4 | -0.02 1
-0.08 1
-0.68 1 | 32
32
32 | 5 | 5
10
5 | | 1612 291249.9 962192
1613 291249.7 962182
1614 291249.9 962172 | 7.1 | 4 | 0.5
0.4
0.3 | 1 | G
G | 1
1
1 | 4 | | Important Habitat
Important Habitat
Important Habitat | 8
8
8 | 8.09 4
17.16 3
26.87 3 | -0.68 1
-1.41 1
-2.17 1 | 32
24
24 | 3 | 3 3 | | 1614 291249.9 962172
1615 291249.6 962162
1616 291249.8 962152 | 6.7
6.3 | 4 4 4 | 0.3
0.6
1.1 | 2 3 | G
R | 1
1
1.5 | 4
8
18 | 2 3 | Important Habitat
Important Habitat
Important Habitat | 8
8 | 26.87 3
36.75 3
46.38 3 | -2.1/ 1
-3.03 1
-3.78 1 | 24
24
24 | 3 3 | 6 | | 1617 291239.0 962192
1618 291240.0 962202 | 6.7
6.2 | 4 | 0.3
0.3 | 1 | G
G | 1 | 4 | | Wind Turbine
Wind Turbine | 6 | 7.84 4
2.00 4 | -0.41 1
0.19 1 | 24
24
24 | 3 3 | 3 | | 1619
291239.7 962212
1620 291239.9 962222 | 4.2
3.3 | 4 2 | 0.2
0.2 | 1
1 | G
G | 1 1 | 4
2 | | Important Habitat
Important Habitat | 8 8 | 10.55 3
11.08 3 | -0.54 1
-0.53 1 | 24
24 | 3 3 | 3 | | 1621 291229.7 962222
1622 291229.4 962212 | 5.1
4.9 | 4 | 0.2
0.1 | 1
1 | G
G | 1
1 | 4
4 | | Important Habitat
Wind Turbine | 8 6 | 20.81 3
15.06 3 | -1.22 1
-0.08 1 | 24
18 | 3 3 | 3 | | 1623 291229.3 962191
1624 291230.2 962182 | 6.9
7.6 | 4 | 0.3
0.2 | 1 | G
G | 1 1 | 4 | | Wind Turbine
Wind Turbine | 6 | 13.08 3
20.34 3 | -1.43 1
-2.10 1 | 18
18 | 3 | 3 3 | | 1625 291230.1 962172
1626 291230.3 962162 | 7.7 | 4 | 0.5
0.6 | 2 | G
G | 1 1 | 8 | | Wind Turbine
Wind Turbine | 6 | 29.71 3
39.18 3
48.85 3 | -2.93 1
-3.72 1
-4.54 1 | 18
18 | 3 | 3
6 | | 1627 291229.9 962152
1628 291219.7 962152
1629 291219.6 962161 | 7.5
6.9 | 4 | 0.7
0.2 | 2 | R | 1
1.5
1.5 | 8
12 | | Wind Turbine Wind Turbine Wind Turbine | 6 | 48.85 3
52.05 3
43.16 3 | -4.54 1
-5.68 1
-4.90 1 | 18
18
18 | 3 | 6 | | 1630 291219.6 962172
1631 291220.0 962182 | 7.5
7.3 | 4 | 0.2
0.4
0.3 | 1 | R
G | 1.5
1.5
1 | 6 | | Wind Turbine
Wind Turbine
Wind Turbine | 6 | 43.16 3
34.27 3
26.44 3 | -4.90 1
-4.03 1
-3.13 1 | 18
18
18 | 3 3 | 6 | | 1632 291219.8 962191
1633 291219.6 962202 | 7.4
7.7 | 4 | 0.4
0.3 | 1 | G
G | 1 1 | 4 | | Wind Turbine
Wind Turbine | 6 | 21.05 3
19.51 3 | -2.42 1
-1.62 1 | 18
18 | 3 | 3 3 | | 1634 291220.0 962211
1635 291219.7 962222 | 7.5
7.7 | 4 | 0.3
0.2 | 1 | G
R | 1
1.5 | 4
6 | 1
2 | Wind Turbine
Wind Turbine | 6 | 22.19 3
28.96 3 | -1.07 1
-1.29 1 | 18
18 | 3 | 3 6 | | | | | | | | | | | · | | | | | | | | 1785 291939.8 962931 | 15 1 | 0.8 | 2 6 | 1 | 2 | 1 | Wind Turbine | 6 | 62.57 3 | -1.11 | 1 18 | 3 | 3 | |--|---|--------------------------|--------------------------|-------------|----------------------------|-----------------------|---|-----------------------|----------------------------|-----------------------|----------------------|------------------|-----------------------| | 1786 291939.9 962922 | 1.5 1 | 1 | 2 R | 1.5 | 3 | | Wind Turbine | 6 | 58.21 3 | -0.89 | 1 18 | 3 | 3 | | 1787 291929.9 962922 | 1.5 1 | 1.5 | 3 R | 1.5 | 4.5 | | Wind Turbine | 6 | 67.47 3 | -0.82 | 1 18 | 3 | 3 | | 1788 291929.9 962932 | 1.6 | 1.5 | 3 R | 1.5 | 4.5 | | Wind Turbine | 6 | 71.60 3 | -1.07 | 1 18 | 3 | 3 | | 1789 291929.9 962942 | 1.7 | 1.5 | 3 G | 1 | 3 | | Wind Turbine | 6 | 76.82 3 | -1.37 | 1 18 | 3 | 3 | | 1790 291919.9 962942
1791 291909.9 962942 | 1.7 | 2.1 | 3 R | 1.5
1.5 | 4.5
4.5 | | Wind Turbine
Wind Turbine | 6 | 85.23 3
93.96 3 | -1.35
-1.34 | 1 18
1 18 | 3 2 | 3 | | 1792 291909.9 962932 | 1.7 1 | 2.2 | 3 R | 1.5 | 4.5 | | Wind Turbine | 6 | 89.74 3 | -1.04 | 1 18 | 3 | 3 | | 1793 291919.9 962932 | 1.7 1 | 2 | 3 R | 1.5 | 4.5 | | Wind Turbine | 6 | 80.56 3 | -1.06 | 1 18 | 3 | 3 | | 1794 291919.9 962922 | 1.6 1 | 2 | 3 G | 1 | 3 | | Wind Turbine | 6 | 76.91 3 | -0.76 | 1 18 | 3 | 3 | | 1795 291909.9 962922 | 1.7 | 2.1 | 3 R | 1.5 | 4.5
4.5 | | Wind Turbine | 6 | 86.48 3 | -0.75 | 1 18
1 18 | 3 | 3 | | 1796 291909.9 962902
1797 291909.9 962892 | 1.7 | 2.1 | 3 K | 1.5 | 4.5 | | Wind Turbine
Wind Turbine | 6 | 83.25 3
83.41 3 | -0.16
0.13 | 1 18 | 3 | 3 | | 1798 291909.9 962882 | 1.8 1 | 2 | 3 G | 1 | 3 | | Wind Turbine | 6 | 84.75 3 | 0.42 | 1 18 | 3 | 3 | | 1799 291909.8 962872 | 1.8 1 | 1.8 | 3 R | 1.5 | 4.5 | | Wind Turbine | 6 | 87.29 3 | 0.72 | 1 18 | 3 | 3 | | 1800 291919.9 962872 | 1.6 | 1.7 | 3 G | 1 | 3 | | Wind Turbine | 6 | 77.75 3 | 0.63 | 1 18 | 3 | 3 | | 1801 291920.0 962882
1802 291919.9 962892 | 1.6 | 1.7 | 3 R | 1.5
1.5 | 4.5
4.5 | | Wind Turbine
Wind Turbine | 6 | 74.79 3
73.44 3 | 0.36
0.10 | 1 18
1 18 | 3 | 3 | | 1803 291919.9 962902 | 15 1 | 1.7 | 3 R | 1.5 | 4.5
4.5 | | Wind Turbine | 6 | 73.26 3 | -0.16 | 1 18 | 3 | 3 | | 1804 291929.9 962902 | 1.6 1 | 0.4 | 1 G | 1 | 1 | | Wind Turbine | 6 | 63.27 3 | -0.11 | 1 18 | 3 | 3 | | 1805 291929.9 962892 | 1.5 | 1.3 | 3 R | 1.5 | 4.5 | | Wind Turbine | 6 | 63.48 3 | 0.14 | 1 18 | 3 | 3 | | 1806 291929.9 962882
1807 291929.9 962872 | 1.5 | 1.2
1.1 | 3
3 | 1 | 3 | | Wind Turbine
Wind Turbine | 6 | 65.23 3
68.42 3 | 0.39
0.65 | 1 18
1 18 | 3 | 3 | | 1808 291939.9 962872 | 1.5 | 0.9 | 2 6 | 1 | 2 | | Wind Turbine
Wind Turbine | 6 | 59.31 3 | 0.69 | 1 18 | 3 | 3 | | 1809 291939.9 962882 | 1.5 | 1 | 2 G | 1 | 2 | | Wind Turbine | 6 | 55.60 3 | 0.43 | 1 18 | 3 | 3 | | 1810 291939.9 962892 | 1.5 | 0.9 | 2 G | 1 | 2 | | Wind Turbine | 6 | 53.53 3 | 0.18 | 1 18 | 3 | 3 | | 1811 291939.9 962902
1812 291959.9 962902 | 2.0 1 | 0.8
0.6 | 2 G | 1 | 2 | | Wind Turbine
Wind Turbine | 6 | 53.29 3
33.36 3 | -0.08
-0.08 | 1 18
1 18 | 3 | 3 | | 1813 291959.9 962892 | 1.4 1 | 0.8 | 2 G | 1 | 2 | | Wind Turbine | 6 | 33.75 3 | 0.26 | 1 18 | 3 | 3 | | 1814 291959.9 962882 | 1.5 | 0.5 | 1 G | 1 | 1 | | Wind Turbine | 6 | 36.95 3 | 0.51 | 1 18 | 3 | 3 | | 1815 291959.9 962872 | 1.5 1 | 0.3 | 1 G | 1 | 1 | | Wind Turbine | 6 | 42.32 3 | 0.78 | 1 18 | 3 | 3 | | 1816 291969.9 962872
1817 291969.9 962882 | 1.8 1 | 0.6 | 2 R | 1.5 | 3 | | Wind Turbine
Wind Turbine | 6 | 35.04 3
28.32 3 | 0.83
0.55 | 1 18
1 18 | 3 | 3 | | 1818 291969.9 962892 | 1.6 1 | 0.3 | 1 6 | 1 | 1 | | Wind Turbine | 6 | 23.99 3 | 0.29 | 1 18 | 3 | 3 | | 1819 291969.9 962902 | 3.1 2 | 0.3 | 1 G | 1 | 2 | | Wind Turbine | 6 | 23.40 3 | -0.10 | 1 18 | 3 | 3 | | 1820 291979.9 962902 | 3.2 2 | 0.3 | 1 G | 1 | 2
1.5 | | Wind Turbine | 6 | 13.66 3 | -0.14 | 1 18 | 3 | 3 | | 1821 291979.9 962892
1822 291979.9 962882 | 1.9 | 0.3 | 1 6 | 1.5 | 1.5 | | Wind Turbine
Wind Turbine | 6 | 14.58 3
20.94 3 | 0.33
0.61 | 1 18
1 18 | 3 | 3 | | 1823 291979.9 962872 | 1.8 1 | 0.6 | 2 R | 1.5 | 3 | | Wind Turbine | 6 | 29.41 3 | 0.92 | 1 18 | 3 | 3 | | 1824 291989.9 962872 | 1.6 1 | 1 | 2 G | 1 | 2 | | Wind Turbine | 6 | 26.49 3 | 0.92 | 1 18 | 3 | 3 | | 1825 291999.9 962872
1826 291999.2 962882 | 2.1 2 | 1 | 2 R | 1.5 | 6 | | Wind Turbine
Wind Turbine | 6 | 27.16 3
17.06 3 | 0.87
0.51 | 1 18
1 18 | 3 | 6 | | 1826 291999.2 962882
1827 291989.9 962882 | 1.7 1 | 0.6 | 1 6 | 1 | 1 | | Wind Turbine
Wind Turbine | 6 | 17.06 3
16.60 3 | 0.51
0.65 | 1 18
1 18 | 3 | 3 | | 1828 291989.9 962892 | 2.4 2 | 0.6 | 2 R | 1.5 | 6 | | Wind Turbine | 6 | 7.04 4 | 0.34 | 1 24 | 3 | 6 | | 1829 291999.9 962892 | 2.6 2 | 0.4 | 1 G | 1 | 2 | | Wind Turbine | 6 | 9.31 4 | 0.14 | 1 24 | 3 | 3 | | 1830 291999.9 962902
1831 291989.9 962902 | 3.0 2 | 0.6 | 2 G | 1 | 4 | | Wind Turbine
Wind Turbine | 6 | 7.79 4
4.86 4 | -0.30
-0.18 | 1 24
1 24 | 3 | 3 | | 1831 291989.9 962902
1832 291089.9 963242 | 7.9 4 | 0.4 | 2 6 | 1 | 8 | | Important Habitat | 8 | 4.86 4
5.54 4 | -0.18
-0.54 | 1 24 32 | 5 | 10 | | 1833 291089.9 963252 | 7.8 4 | 1 | 2 G | 1 | 8 | 2 | Important Habitat | 8 | 5.54 4 | -0.54 | 1 32 | 5 | 10 | | 1834 291089.9 963262 | 5.1 4 | 1.1 | 3 R | 1.5 | 18 | | Important Habitat | 8 | 5.54 4 | -0.11 | 1 32 | 5 | 15 | | 1835 291089.9 963272
1836 291089.9 963282 | 4.4 4
5.8 4 | 0.9 | 2 R | 1.5
1.5 | 12
6 | 2 | Important Habitat
Important Habitat | 8 | 1.42 4
1.42 4 | -0.06
-0.09 | 1 32
1 32 | 5 5 | 10 | | 1837 291089.9 963282
1837 291099.9 963282 | 4.8 4 | 2.2 | 3 G | 1.5 | 12 | | Important Habitat
Important Habitat | 8 | 1.42 4 | -0.03 | 1 32 32 | 5 | 10 | | 1838 291099.9 963272 | 3.6 2 | 1.7 | 3 G | 1 | 6 | | Important Habitat | 8 | 1.42 4 | -0.05 | 1 32 | 5 | 10 | | 1839 291099.9 963262 | 2.2 | 2 | 3 G | 1 | 6 | | Important Habitat | 8 | 1.42 4 | 0.00 | 1 32 | 5 | 10 | | 1840 291099.9 963251
1841 291099.9 963242 | 5.3 4 | 2 | 3 G | 1 | 12
12 | | Important Habitat
Important Habitat | 8 | 1.92 4
1.42 4 | -0.18
-0.19 | 1 32
1 32 | 5 | 10
10 | | 1842 291109.9 963242 | 5.0 4 | 1.3 | 2 R | 1.5 | 12 | 2 | Important Habitat | 8 | 1.42 4 | -0.13 | 1 32 | 5 | 10 | | 1843 291109.4 963252 | 2.1 2 | 0.9 | 2 R | 1.5 | 6 | | Important Habitat | 8 | 1.34 4 | 0.02 | 1 32 | 5 | 10 | | 1844 291109.9 963262 | 2.0 1 | 2.2 | 3 R | 1.5 | 4.5 | | Important Habitat | 8 | 1.42 4 | 0.00
-0.03 | 1 32 | 5 | 5 | | 1845 291109.9 963272
1846 291109.9 963282 | 2.3 2 | 2.5 | 3 K | 1.5 | 9 | | Important Habitat
Important Habitat | 8 | 1.42 4
1.42 4 | -0.03 | 1 32
1 32 | 5 | 10
10 | | 1847 291109.9 963292 | 2.5 2 | 3 | 3 R | 1.5 | 9 | 2 | Important Habitat | 8 | 1.42 4 | -0.02 | 1 32 | 5 | 10 | | 1848 291119.9 963292 | 1.2 1 | 3.3 | 8 R | 1.5 | 12 | | Important Habitat | 8 | 1.42 4 | -0.01 | 1 32 | 5 | 10 | | 1849 291119.9 963282 | 1.8 1 | 3 | 3 R | 1.5 | 4.5 | | Important Habitat | 8 | 1.42 4 | -0.04 | 1 32 | 5 | 5 | | 1850 291119.9 963272
1851 291119.9 963262 | 1.6 1 | 2.5 | 3 R | 1.5 | 4.5 | | Important Habitat
Important Habitat | 8 | 1.42 4
1.42 4 | -0.04
-0.03 | 1 32
1 32 | 5 | 5 | | 1852 291119.9 963252 | 1.4 1 | 1.6 | 3 R | 1.5 | 4.5 | | Important Habitat | 8 | 1.42 4 | -0.03 | 1 32 | 5 | 5 | | 1853 291119.9 963242 | 1.6 1 | 1.2 | 3 G | 1 | 3 | | Important Habitat | 8 | 1.42 4 | -0.01 | 1 32 | 5 | 5 | | 1854 291119.9 963302 | 1.7 1 | 3.5 | 8 R | 1.5 | 12 | 2 | Important Habitat | 8 | 1.42 4 | -0.01 | 1 32 | 5 | 10 | | 1855 291119.9 963312
1856 291119.9 963322 | 1.7 | 3.5
2.7 | 8 K | 1.5 | 12 | | Important Habitat
Important Habitat | 8 | 1.42 4
1.42 4 | 0.02 | 1 32
1 32 | 5 | 10 | | 1857 291121.1 963332 | 2.1 2 | 2.3 | 3 G | 1 | 6 | | Important Habitat | 8 | 1.10 4 | -0.02 | 1 32 | 5 | 10 | | 1858
291109.9 963332 | 3.6 2 | 2 | 3 G | 1 | 6 | | Important Habitat | 8 | 1.42 4 | 0.03 | 1 32 | 5 | 10 | | 1859 291099.9 963332 | 7.7 4
8.3 6 | 0.9 | 2 R | 1.5 | 12 | 2 | Important Habitat | 8 | 1.42 4
10.16 3 | 0.06
0.94 | 1 32
1 24 | 5 | 10 | | 1860 291089.9 963332
1861 291109.9 963312 | 16 1 | 2.5 | 3 6 | 1 | 3 | | Important Habitat
Important Habitat | 8 | 1.42 4 | 0.02 | 1 32 | 5 | 5 | | 1862 291109.9 963322 | 2.2 2 | 2 | 3 G | 1 | 6 | | Important Habitat | 8 | 1.42 4 | 0.02 | 1 32 | 5 | 10 | | 1863 291099.9 963322 | 7.4 4 | 0.9 | 2 G | 1 | 8 | | Important Habitat | 8 | 1.42 4 | -0.01 | 1 32 | 5 | 10 | | 1864 291089.9 963322
1865 291099.9 963312 | 10.6 6
4.3 4 | 0.3 | 1 G | 1 | 6 | 2 | Important Habitat
Important Habitat | 8 | 5.54 4
1.42 4 | 0.86
0.00 | 1 32
1 32 | 5 | 10
10 | | 1866 291089.9 963312 | 11.8 6 | 0.9 | 2 G | 1 | 12 | 2 | Important Habitat | 8 | 5.54 4 | 0.00 | 1 32 | 5 | 10 | | 1867 291089.9 963302 | 10.2 6 | 0.8 | 2 G | 1 | 12 | | Important Habitat | 8 | 5.54 4 | 0.77 | 1 32 | 5 | 10 | | 1868 291099.9 963302 | 3.2 2 | 1.4 | 3 G | 1 | 6 | | Important Habitat | 8 | 1.42 4 | 0.00 | 1 32 | 5 | 10 | | 1869 291109.9 963302
1870 291069.9 963302 | 7.8 4 | 3.2
0.2 | 8 K | 1.5 | 24
A | | Important Habitat
Wind Turbine | 8 | 1.42 4
12.74 3 | -0.02
2.53 | 1 32
1 18 | 5 | 15
3 | | 1871 291069.9 963312 | 4.8 4 | 0.2 | 1 G | 1 | 4 | | Wind Turbine | 6 | 20.41 3 | 1.95 | 1 18 | 3 | 3 | | 1872 291069.9 963322 | 6.5 4 | 0.2 | 1 G | 1 | 4 | | Important Habitat | 8 | 25.41 3 | 2.89 | 1 24 | 3 | 3 | | 1873 291069.9 963332
1874 291079.9 963332 | 6.5 4
6.3 4 | 0.2 | 1 R | 1.5
1.5 | 6 | 2 | Important Habitat | 8 | 26.80 3
17.63 3 | 2.26
2.52 | 1 24 | 3 | 6 | | 1875 291059.9 963332 | 7.6 4 | 0.1 | 1 G | 1.5 | 4 | | Important Habitat
Important Habitat | 8 | 36.41 3 | 1.00 | 1 24 | 3 | 3 | | 1876 291059.9 963322 | 11.4 6 | 0.4 | 1 G | 1 | 6 | | Wind Turbine | 6 | 34.26 3 | 0.04 | 1 18 | 3 | 6 | | 1877 291059.9 963312
1878 291059.9 963302 | 8.0 6 | 0.2 | 1 G | 1 | 6 | | Wind Turbine | 6 | 26.83 3 | 1.25 | 1 18 | 3 | 6 | | 1878 291059.9 963302
1879 291059.9 963292 | 9.0 6
6.0 4 | 0.1 | 1 R | 1.5 | 9 | | Wind Turbine
Wind Turbine | 6 | 21.58 3
20.28 3 | 3.05
3.67 | 1 18
1 18 | 3 2 | 3 | | 1880 291049.9 963302 | 14.0 6 | 0.1 | 1 R | 1.5 | 9 | | Wind Turbine | 6 | 31.12 3 | 1.69 | 1 18 | 3 | 6 | | 1881 291049.9 963312 | 13.6 6 | 0.1 | 1 G | 1 | 6 | | Wind Turbine | 6 | 34.97 3 | 0.32 | 1 18 | 3 | 6 | | 1882 291049.9 963322
1883 291049.9 963332 | 11.4 6
9.9 6 | 0.2 | 1
1 | 1 | 6 | | Wind Turbine
Important Habitat | 6
8 | 40.95 3
46.19 3 | -1.79
-0.36 | 1 18
1 24 | 3 | 6 | | 1884 291039.9 963332 | 12.9 6 | 0.3 | 1 K | 1.5 | 6 | | Wind Turbine | 6 | 46.19 3
55.09 3 | | 1 24 18 | 3 | 6 | | 1885 291039.9 963322 | 14.6 6 | 0.7 | 2 G | 1 | 12 | | Wind Turbine | 6 | 48.79 3 | -3.47 | 1 18 | 3 | 6 | | 1886 291039.9 963312
1887 291039.9 963302 | 20.8
21.6
8 | 0.4 | 1 G | 1 | 8 | | Wind Turbine
Wind Turbine | 6 | 43.89 3
40.89 3 | -2.53
-1.56 | 1 18
1 18 | 3 | 6 | | 1888 291029.9 963302 | 23.2 8 | 0.1 | 1 G | 1 | 8 | | Wind Turbine | 6 | 50.75 3 | -5.62 | 1 18 | 3 | 6 | | 1889 291029.9 963312 | 19.4 | 0.8 | 2 G | 1 | 16 | | Wind Turbine | 6 | 53.19 3 | -6.46 | 1 18 | 3 | 9 | | 1890 291029.9 963322
1891 291029.9 963332 | 15.5
11.7
8 | 0.7 | 2 G | 1 | 16
9 | 3 7 | Wind Turbine
Wind Turbine | 6 | 57.31 3
62.76 3 | -6.46
-6.17 | 1 18
1 18 | 3 | 6 | | 1892 291069.9 963292 | 11.6 | 0.5 | 1 G | 1.5 | 6 | | Wind Turbine | 6 | 10.41 3 | 1.78 | 1 18 | 3 | 6 | | 1893 291059.9 963282 | 12.5 6 | 0.1 | 1 G | 1 | 6 | | Wind Turbine | 6 | 23.61 3 | 2.74 | 1 18 | 3 | 6 | | 1894 291069.9 963282
1895 291049 963282 | 12.4 6 | 0.2 | 1 G | 1 | 6 | | Wind Turbine | 6 | 15.95 3
32.57 3 | 0.76
3.08 | 1 18 | 3 | 6 | | 1895 291049.9 963282
1896 291039.9 963282 | 11.4 6
20.4 8 | 0.1 | 1 6 | 1 | 8 | | Wind Turbine
Wind Turbine | 6 | 32.57 3
42.00 3 | 3.08
-0.19 | 1 18
1 18 | 3 | 6 | | 1897 291029.9 963282 | 26.5 | 0.1 | 1 G | 1 | 8 | | Wind Turbine | 6 | 51.65 3 | -4.37 | 1 18 | 3 | 6 | | 1898 291029.9 963272 | 29.9 8 | 0.2 | 1 G | 1 | 8 | | Wind Turbine | 6 | 54.89 3 | -5.23 | 1 18 | 3 | 6 | | 1899 291039.9 963272
1900 291049.9 963272 | 22.3
19.4
8 | 0.1
0.1 | 1 R | 1.5 | 12
8 | 2 | Wind Turbine
Wind Turbine | 6 | 45.93 3
37.51 3 | -1.07
1.17 | 1 18
1 18 | 3 | 6 | | 1900 291049.9 963272
1901 291059.9 963272 | 20.4 8 | 0.1 | 1 G | 1 | 8 | | Wind Turbine
Wind Turbine | 6 | 30.06 3 | 0.61 | 1 18 | 3 | 6 | | 1902 291069.9 963272 | 17.8 | 0.2 | 1 G | 1 | 8 | | Important Habitat | 8 | 20.42 3 | 2.28 | 1 24 | 3 | 6 | | 1903 291069.9 963262 | 11.3 6 | 0.5 | 1 G | 1 | 6 | | Important Habitat | 8 | 23.33 3 | -0.83 | 1 24 | 3 | 6 | | 1904 291059.9 963262
1905 291049.9 963262 | 15.2 8
23.3 8 | 0.2 | 1
1 | 1 | 8 | 2 | Important Habitat
Important Habitat | 8 | 32.44 3
41.95 3 | -0.42
-0.04 | 1 24
1 24 | 3 | 6 | | 1906 291039.9 963262 | 29.5 | 0.1 | 1 R | 1.5 | 12 | 2 | Minor Watercourse | 6 | 48.16 3 | 6.09 | 1 18 | 3 | 6 | | 1907 291029.9 963262 | 29.9 8 | 0.1 | 1 R | 1.5 | 12 | | Minor Watercourse | 6 | 51.01 3 | 3.57 | 1 18 | 3 | 6 | | 1908 291029.9 963252
1909 291029.9 963242 | 15.2 8
13.4 6 | 0.1 | 1 R | 1.5 | 12
6 | | Minor Watercourse Minor Watercourse | 6 | 41.58 3
32.50 3 | 1.81
0.50 | 1 18
1 18 | 3 | 6 | | 1909 291029.9 963242
1910 291039.9 963242 | 13.4 6
15.2 8 | 0.4 | 1 G | 1 1.5 | 6
12 | | Minor Watercourse Minor Watercourse | 6 | 32.50 3
29.13 3 | 0.50
2.64 | 1 18
1 18 | 3 | 6 | | 1911 291039.9 963252 | 18.0 | 0.1 | 1 R | 1.5 | 12 | 2 | Minor Watercourse | 6 | 39.01 3 | 4.40 | 1 18 | 3 | 6 | | 1912 291049.9 963252 | 17.3 | 0.1 | 1 R | 1.5 | 12 | | Minor Watercourse | 6 | 35.20 3 | 4.35 | 1 18 | 3 | 6 | | 1913 291059.9 963252
1914 291069.9 963252 | 11.3 6 | 0.3 | 1 R | 1.5 | 9 | 2 | Minor Watercourse
Important Habitat | 6 | 33.64 3
25.41 3 | 5.62
-1.32 | 1 18
1 24 | 3 | 6 | | 1914 291069.9 963252
1915 291069.9 963242 | 9.3 6
8.7 6 | 0.3 | 1 G | 1.5 | 9 | | Important Habitat
Minor Watercourse | 6 | 25.41 3
24.08 3 | -1.32
2.97 | 1 24 18 | 3 | 6 | | 1916 291059.9 963242 | 13.2 6 | 0.1 | 1 G | 1 | 6 | | Minor Watercourse | 6 | 23.64 3 | 3.49 | 1 18 | 3 | 6 | | 1917 291049.9 963242 | 14.9 6 | 0.3 | 1 G | 1 | 6 | | Minor Watercourse | 6 | 25.81 3 | 2.08 | 1 18 | 3 | 6 | | 1918 291000.0 962140
1919 291008.2 962142 | 3.0 2 | 0.5 | 1 G | 1 | 2 | | Important Habitat | 8 | 85.50 3
87.13 3 | 1.18
1.59 | 1 24
1 24 | 3 2 | 3 | | 1919 291008.2 962142
1920 290997.9 962147 | 3.0 2
2.8 2 | 0.6 | 1 G | 1 1.5 | 3 | | Important Habitat
Important Habitat | 8 | 87.13 3
78.39 3 | 1.59 | 1 24 | 3 | 3 | | 1921 291000.8 962135 | 3.0 2 | 0.6 | 2 G | 1 | 4 | | Minor Watercourse | 6 | 84.19 3 | 17.39 | 2 18 | 3 | 3 | | 1922 290990.4 962139 | 3.2 2 | 0.7 | 2
3 | 1 | 4 | | Minor Watercourse | 6 | 76.86 3 | 16.84 | 2 18 | 3 | 3 | | 1923 291289.9 961792
1924 291299.9 961782 | 2.0 1
1.8 1 | 1.8 | 3 R | 1.5
1.5 | 4.5
4.5 | | Minor Watercourse
Minor Watercourse | 6 | 5.88 4
1.42 4 | 0.07
0.01 | 1 24
1 24 | 3 | 3 | | 1925 291309.9 961782 | 1.6 1 | 2 | 3 R | 1.5 | 4.5 | | Minor Watercourse Minor Watercourse | 6 | 3.65 4 | -0.03 | 1 24 | 3 | 3 | | 1926 291319.9 961782 | | 2.1 | 3 R | 1.5 | 4.5 | | Minor Watercourse | 6 | 8.64 4 | -0.10 | 1 24 | 3 | 3 | | 1927 291329.9 961782 | 1.6 | | 3 8 | 1.5 | 9 | | Minor Watercourse | 6 | 9.79 4 | 0.07 | 1 24 | 3 | 6 | | | 1.6
2.3
2 | 2.5 | 3 | | | | Minor Watercourse | | | | | | | | 1928 291339.9 961782
1929 291329.9 961772 | 1.6 1
2.3 2
2.4 2
2.3 2 | 2.4 | 3 R | 1.5 | 6 | 2 | | 6 | 14.40 3
3.65 4 | 0.08
-0.05 | 1 18
1 24 | 3 | 6 | | 1929 291329.9 961772
1930 291319.9 961772 | 1.6 1
2.3 2
2.4 2
2.3 2
2.2 2 | 2.5
2.4
1.5
0.7 | 3 R
3 G
2 G | 1 | 6
4 | 2
1 | Minor Watercourse
Minor Watercourse | 6 | 3.65 4
1.42 4 | -0.05
0.00 | 1 24
1 24 | 3
3
3 | 6
6
3 | | 1929 291329.9 961772
1930 291319.9 961772
1931 291309.9 961772 | 2.4 2
2.3 2
2.2 2
1.7 1 | 2.4
1.5
0.7
1 | 3 R
3 G
2 G | 1
1
1 | 6
4
2 | 2
1
1 | Minor Watercourse
Minor Watercourse
Important Habitat | 6 | 3.65 4
1.42 4
1.42 4 | -0.05
0.00
0.00 | 1 24
1 24
1 32 | 3
3
3
5 | 6
6
3
5 | | 1929 291329.9 961772
1930 291319.9 961772 | 2.4
2.3 2 | 2.4
1.5 | 3 G
2 G
2 G
3 G | 1 | 9
6
4
2
3
6 | 2
1
1
1
2 | Minor Watercourse
Minor Watercourse | 6
6
8
8
8 | 3.65 4
1.42 4 | -0.05
0.00 | 1 24
1 24 | 3
3
5
5 | 6
6
3
5
5 | | | 1934 291309.9 961762 | 4.6 4 | 1.1 3 | G | 1 | 12 | 2 | Important Habitat | 8 | 1.42 4 | | 32 | 5 | 10 |
--|--|----------------|-----------------|--------|----------|----------|--------|--|-----|------------------|--------------------|----------|--------|---------| | | 1935 291319.9 961762
1936 291329.9 961762 | 5.8 4
5.1 4 | 0.5 1 | G
G | 1 | 8 | 1 2 | | 8 | 1.42 4
1.42 4 | | | 5
5 | 10 | | | | | 1 2 | G | 1 | 4 | 1 | | 6 | | | | 3 | 3 | | | 1938 291339.9 961752
1939 291329.9 961752 | - | 0.6 2 | G | 1 | 2 | 1 | | 8 | | | | 5 | 5 | | | 1940 291319.9 961752 | | | G | 1 | 4 | 1 | Important Habitat | 8 | 6.39 4 | 0.44 1 | 32 | 5 | 5 | | | | | 0.4
1.2 3 | G | 1 | 6 | 1 2 | Important Habitat
Important Habitat | 8 | | | | 5
5 | 10 | | | 1943 291279.9 961752 | 1.5 | 1 2 | G | 1 | 2 | 1 | Important Habitat | 8 | | | | 5 | 5 | | | | | | G | 1 | 4 | 1 | | 8 | | | | 5 | 5 | | | | 3.2 2 | 0.5 | G | 1 | 2 | 1 | Important Habitat | 8 | | | 32 | 5 | 5 | | | | | | R
G | | 3
4 | 1 | | 8 | | | | 5
5 | 5 | | | 1949 291269.9 961762 | 2.5 | 1.4 3 | G | 1 | 6 | 2 | Important Habitat | 8 | | | | 5 | 10 | | | | | 1.4 3 | G | 1.5 | 6 | 2 | | 8 | | | | 5 | 10 | | | | 2.6 2 | 1.2 3 | G | 1 | 6 | 2 | | 8 | | | | 5 | 10 | | | 1954 291269.9 961772 | | 0.8 2 | G | 1 | 4 | 1 | | 8 | | | | 5 | 5 | | | | 3.0 2 | 0.5 | G | 1 | 2 | 1 | Important Habitat | 8 | | | | 5 | 5 | | | 1957 291249.9 961782 | | 0.5 | G | 1 | 2 | î | Important Habitat | 8 | 1.42 4 | 0.03 | 32 | 5 | 5 | | | | | 0.5 | G
R | 1
15 | 2
9 | 1 2 | | 8 | | | | 5
5 | 5
10 | | | 1960 291249.9 961812 | 2.0 2 | 2.6 3 | R | 1.5 | 9 | 2 | Important Habitat | 8 | 1.42 4 | -0.02 1 | 32 | 5 | 10 | | Mary | | | | R
G | | 9 | 2
1 | | 8 8 | | | | 5
5 | 10
5 | | | 1963 291249.9 961842 | 5.9 4 | 0.3 | G | 1 | 4 | 1 | Important Habitat | 8 | | | | 5 | 5 | | | | | | G
R | 1
1.5 | 2
12 | 1 2 | | 8 8 | | | | 5
5 | 5
10 | | | | | 1.1 3 | R | | 18 | 3 | Important Habitat | 8 | | | | 5 | 15 | | No. 16 | 1967 291259.9 961812 | | 2.7 3 | R | | 9 | 2 | | 8 | | | | 5 | 10 | | | | | 2.4 3 | R | | 9 | 2 | | 6 | | | | 3 | 6 | | | | | 1.1 3 | R | | 9 | 2 | | 8 | | | | 5 | 10 | | | | | | G | 1 | 2 | 1 | | 8 8 | | | | 5 | 5 | | | 1974 291279.9 961842 | 2.5 2 | 0.6 2 | G | 1 | 4 | i | Important Habitat | 8 | 1.42 4 | -0.06 1 | 32 | 5 | 5 | | | | | | G
R | 1
15 | 2
9 | 1 2 | | 8 | | | | 5
5 | 5
10 | | | 1977 291279.9 961812 | 2.1 2 | 2.1 3 | G | 1 | 6 | 2 | Important Habitat | 8 | 11.55 3 | 0.08 1 | 24 | 3 | 6 | | THE COLUMN AS A STATE OF | | 2.0 1
1.9 1 | 2.2
2.5 | R
R | | | 1 1 | | 6 | | | | 3 3 | | | Column C | 1980 291309.9 961802 | | 2.4 3 | R | 1.5 | | 1 | Minor Watercourse | 6 | 20.98 3 | 0.05 | 18 | 3 | | | | 1981 291329.9 961802
1982 291339.9 961802 | | 2.2
1.2
3 | R R | | 9 | 2 | | 6 | | | | 3 3 | 6 | | The content of | 1983 291339.9 961812 | 2.9 2 | 1 2 | R | 1.5 | 6 | 2 | Important Habitat | 8 | 36.10 3 | 0.56 1 | 24 | 3 | 6 | | Column | 1985 291339.9 961842 | 4.4 4 | 0.5 1 | G | 1.5 | 4 | 1 | Important Habitat | 8 | 24.68 3 | 1.11 1 | 24 | 3 | 3 | | Second State | 1986 291329.9 961842 | | 0.2 1 | G | 1 | 2 | 1 2 | Important Habitat | 8 | 14.70 3 | 0.51 1 | | 3 5 | | | | 1988 291309.9 961842 | 2.2 2 | 2.3 3 | R | | 9 | 2 | Important Habitat | 8 | 1.42 4 | -0.04 1 | 32 | 5 | 10 | | No. | 1989 291299.9 961842 | | 1.7 3 | G | | 6 | 2 2 | Important Habitat | 8 | | -0.04 1 | | 5 | 10 | | Second S | 1991 291299.9 961822 | 2.2 2 | 2 3 | R | 1.5 | 9 | 2 | Important Habitat | 8 | 11.38 3 | -0.21 1 | 24 | 3 | 6 | | Martin | 1992 291299.9 961812
1993 291309.9 961812 | | 2.4
2.7
3 | G | 1 | 6 | 2 | | 8 | | | | 3 | 6 | | Column C | 1994 291319.9 961812 | 2.1 2 | 1.7 3 | G | | 6 | 2 | Important Habitat | 8 | 23.45 3 | -0.02 1 | 24 | 3 | 6 | | Second Control Seco | 1995 291329.9 961812
1996 291330.0 961821 | 2.4 | 1.5
1.8
3 | R
R | | 9 | 2 2 | | 8 8 | | | | 3 | 6 | | The control | 1997 291329.9 961832 | | 1.3 3 | R | 1.5 | 9 | 2 | Important Habitat | 8 | 15.96 3 | 0.29 1 | 24 | 3 | 6 | | No. | 1998 291319.9 961832
1999 291309.9 961832 | | 2.8
2.7
3 | G
R | | 3
q | 1 2 | Important Habitat | 8 | | | | 5
5 | 5
10 | | State Stat | 2000 291309.9 961822 | 2.2 2 | 2.9 3 | R | 1.5 | 9 | 2 | Important Habitat | 8 | 11.38 3 | -0.21 1 | 24 | 3 | 6 | | No. 1 | | | 3.5 | R
R | | 24
12 | 3
2 | | 8 | | | | 3 | 9 | | Martin | 2003 291759.9 962082 | 5.2 4 | 1 2 | G | 1 | 8 | 2 | Wind Turbine | 6 | 33.75 3 | -1.57 1 | 18 | 3 | 6 | | Column C | | | 0.6 2 | R
R | | | 2 2 | | 6 | | | | 3 | 6 | | | 2006 291789.9 962082 | 7.6 4 | 0.5 | G | 1 | 4 | 1 | Wind Turbine | 6 | 63.34 3 | -3.23 1 | | 3 | 3 | | Martin M | | | 0.2
0.3
1 | G
R | 1
1.5 | 6
9 | 2 2 | | 6 | | | | 3 | 6 | | A | | | 0.1 1 | G | 1 | 4 | 1 | | 6 | | | 18 | 3 | 3 | | A | 2010 291799.9 962052 2011 291799.9 962042 | | 0.1 | R R | | 6 | 2 | Wind Turbine Wind Turbine | 6 | | -1.82 1
-1.19 1 | 18 | 3 | 6 | | A | 2012 291789.9 962042 | 5.1 4 | | R | | 6 | 2 | Wind Turbine | 6 | | -0.27 1 | 18 | 3 | 6 | | 1 | 2013 291789.9 962052
2014 291789.9 962062 | 5.8 4 | | R | 1.5 | 6 | 2 | Wind Turbine Wind Turbine | 6 | | | 18 | 3 | 6 | | March Marc | | | | R | | 12 | 2 | | 6 | | | | 3 | 6 | | State Stat | 2017 291779.9 962062 | | | G | 1 | 8 | 2 2 | Wind Turbine | 6 | 54.28 3 | -1.07 1 | | 3 | 6 | | March Marc | | | 0.6 2 | R | | 12 | 2 | | 6 | | | 18 | 3 | 6 | | | 2020 291769.9 962042 | 4.4 4 | 0.9 2 | R | | 12 | 2 | Wind Turbine | 6 | 53.67 3 | 0.63 | | 3 | 6 | | 1 | | | | G
R | | 4
12 | 1 2 | | 6 | | | | 3 | 3
6 | | State Stat | 2023 291769.9 962072 | | 0.5 1 | R | | 6 | 2 | Wind Turbine | 6 | 42.92 3 | -1.24 1 | 18 | 3 | 6 | | Second | 2024 291759.9 962072
2025 291759.9 962062 | | | G
R | 1
1.5 | 8
12 | 2 2 | Wind Turbine
Wind Turbine | 6 | | | 18
18 | 3 | 6 | | The second column | 2026 291760.9 962051 | 4.2 4 | 0.5 | G | 1 | 4 | 1 | Wind Turbine | 6 | 40.90 3 | 0.42 1 | 18 | 3 | 3 | | Second Column Colum | 2027 291749.9 962042 | | 0.6 2 | G | | 8 | 2 | | 6 | | | | 3 | 6 | | 20.00 20.0 | | | | G | 1 | 4 | 1 | | 6 | | | | 3 | | | 1 | 2031 291709.9 962042 | 9.8 6 | | R | | 9 | 2 | Wind Turbine | 6 | 36.57 3 | 0.38 1 | 18 | 3 | 6 | | May | | | 0.4
0.2 | G
R | | 4 | 1 2 | | 6 | | | | 3 3 | 3 | | 100
100 | 2034 291729.9 962052 | 4.2 4 | | G | 1 | 4 | i | Wind Turbine | 6 | 22.48 3 | 1.49 1 | 18 | 3 | 3 | | 100 | | | 0.3 1
0.5 1 | R
G | | 6 | 2
1 | | 6 | | | | 3 3 | 3 | | 200 201500 5000 5000 5000 5000 5000 5000 | 2037 291749.9 962062 | 3.9 2 | 0.3 1 | G | | 2 | 1 | Wind Turbine | 6 | 25.96 3 | 0.24 1 | 18 | 3 | | | 201 202 202 202 202 202 202 202 202 202 | 2039 291729.9 962062 | 4.2 4 | 0.2 | G | 1 | 4 | 1 | Wind Turbine | 6 | 12.63 3 | 0.80 1 | 18 | 3 | | | 2002 2017-13 | | | | G | 1 | 4 | 1 | | 6 | | | | 3 | | | 2004 2017 | 2042 291719.9 962072 | 3.5 2 | 0.2 1 | G | 1 | 2 | 1 | Wind Turbine | 6 | 7.51 4 | -0.16 1 | 24 | 3 | 3 | | 200 20100 9000 45 | 2044 291739.9 962072 | 4.2 4 | | K
G | | 3
4 | 1 | Wind Turbine | 6 | 13.06 3 | -0.09 1 | 18 | 3 3 | | | 200 201 | 2045 291749.9 962072 | 4.5 4 | 0.3 | G | 1 | 4 | 1 | Wind Turbine | 6 | 22.97 3 | -0.36 1 | 18 | 3 | | | 200 301000 20000 2 | 2047 291729.9 962082 | 3.8 2 | | 6 | 1 | 2 | 1 | Wind Turbine | 6 | 8.22 4 | -0.52 1 | 24 | 3 | | | 250 257000 250000 250000 250000 250000 250000 250000 250000 250000 250000 250000 250000 250000 2500000 250000 2500000 2500000 2500000 25000000 25000000000 250000000000 | 2048 291719.9 962082
2049 291709 962082 | | 0.2 1 | G | 1 | 2 8 | 1 2 | | 6 | | | | 3 | 3 | | 2023 297298 00000 17 2 2 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 | 2050 291709.9 962092 | 2.5 2 | | G | 1 | 4 | 1 | Wind Turbine | 6 | 24.65 3 | -1.36 | 18 | 3 | | | 263 257349 80202 4.0 4 0.0 1 0.0 1 0.0 1 1 0.0 1 1 1 6 1 Nord Tubese 6 2.248 3 -3.50 1 1 38 3 -3.50 1 2 0.0 1 2 0.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | 0.5 1
0.5 1 | G
R | | 2 | 1 | | 6 | | | | 3 3 | | | 255 251748 9 50120 | 2053 291739.9 962092 | 4.9 4 | | G | 1 | 4 | 1 | Wind Turbine | 6 | 21.88 3 | -1.50 1 | 18 | 3 | | | 266 221749 96112 3 8 2 1.5 3 8 1 1.5 3 6 4.4.0 3 3 3.4.8 1 18 3 6 6 1.5 3 6 6 1 1 1 6 6 2 4 Wind Tutthere 6 6 2.5 3 3 3 3.4.8 1 1 18 3 5 6 6 1 1 1 18 3 5 6 1 1 1 18 3 5 6 1 1 1 18 3 5 6 1 1 1 18 3 5 6 1 1 1 18 3
5 6 1 1 1 18 3 5 6 1 1 1 1 18 3 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | G | _ | 8
12 | 2 2 | | 6 | | | | 3 3 | 6 | | 205 291799 9 96112 3 8 2 1 2 8 1 15 6 2 West Turbine 6 6 62.08 3 | 2056 291749.9 962112 | 3.8 2 | 1.5 | R | | 9 | 2 | Wind Turbine | 6 | 44.10 3 | -3.18 1 | 18 | 3 | 6 | | 2006 297999 962122 4.4 4 1.5 3 R 1.5 18 3 Nond Turbee 6 71.99 3 4.4 4 1.5 3 R 1.5 18 3 Nond Turbee 6 72.99 3 4.4 4 1.3 3 R 1.5 18 3 Nond Turbee 6 73.297 3 4.5 0 1 1 18 3 R 1 1.5 18 18 3 Nond Turbee 6 73.297 3 4.5 0 1 1 18 3 R 1 1.5 18 18 3 Nond Turbee 6 73.297 3 1.5 0 1 1 18 3 R 1 1.5 18 18 18 18 18 18 18 18 18 18 18 18 18 | 2058 291749.9 962132 | 3.8 2 | 1.5 3 | R | | 6 | 2 2 | Wind Turbine | 6 | 62.08 3 | -3.90 1 | 18 | 3 | 6 | | 2061 291779 9 96132 6 5 4 1.3 3 R 1.5 18 3 Word Turbine 6 78.27 3 5.50 1 18 3 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2059 291759.9 962132 | | 1.8 3 | R | | 9 | 2 | | 6 | | | | 3 | 6 | | 2063 2917999 962132 7.4 4 0.8 2 8 6 1.5 12 2 Wind Turbine 6 9.296 3 -0.04 1 18 3 6 6 1 1 8 0.8 2 8 6 1 1 8 8 2 2 Wind Turbine 6 6 87.10 3 -0.66 1 1 18 3 5 6 1 15 12 2 8 1 1.5 12 2 2 Wind Turbine 6 6 78.93 3 3 -0.66 1 1 1 18 3 5 6 1 1 18 3 5 6 1 1 1 18 3 5 6 1 1 1 18 3 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2061 291779.9 962132 | 6.3 4 | | R | 1.5 | 18 | 3 | Wind Turbine | 6 | 78.27 3 | -5.90 1 | 18 | 3 | 9 | | 2064 2937999 952122 6.3 4 0.8 2 G 1 8 8 2 Wind Turbine 6 87.10 3 7-6.66 1 1 18 3 6 6 7.00 5 2937999 952122 6.3 4 1 1 2 R 1 1 5 12 8 7 Wind Turbine 6 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7. | | 6.4 4 | 1.3 | R | | | 3 2 | | 6 | | | | 3 3 | 9 | | 2066 291799 96212 | 2064 291799.9 962122 | | 0.8 2 | G | 1 | 8 | 2 | Wind Turbine | 6 | 87.10 3 | -7.66 1 | 18 | 3 | 6 | | 2067 291799 962122 | | | 1 2 | R | | | 2 3 | | 6 | | | | 3 | 6 | | 2009 201759 962112 3.8 2 1.2 3 8 8 1.5 9 2 2 Wind Turbine 6 50.02 3 1 3.67 1 18 3 3 6 6 2070 201769 962112 5.2 4 1 1 2 3 8 8 1.5 18 8 3 Wind Turbine 6 5 50.02 3 1 3.47 1 18 3 3 6 9 2071 201779 962112 6.9 4 1 1 2 8 8 1 1.5 18 8 2 2 Wind Turbine 6 6 6 73.01 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2067 291769.9 962122 | 4.7 4 | 1 2 | R | 1.5 | | 2 | Wind Turbine | 6 | 64.14 3 | -4.61 1 | 18 | 3 | 6 | | 2070 2917899 962112 5.2 4 1.2 3 8 8 1.5 188 3 WindTurbine 6 5.09 3 3 4.22 1 18 3 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | 1.4 3 | R | | 9 | 2 2 | | 6 | | | | 3 | 6 | | 2072 2917899 962112 6.0 4 0.6 2 0 6 1 8 8 2 Wind Turbine 6 73.31 3 1 -7.28 1 18 3 6 6 73.20 2073 2917999 962102 8.5 6 0.2 1 6 0 1 1 6 0 2 Wind Turbine 6 7.95 6 3 1 -7.28 1 18 3 3 3 2 2 Wind Turbine 7 6 7.95 6 3 1 18 1 3 3 3 3 2 2 0.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2070 291769.9 962112 | 5.2 4 | 1.2 3 | R | 1.5 | 18 | 3 | Wind Turbine | 6 | 57.09 3 | -4.22 1 | 18 | 3 | 9 | | 2073 291799 962112 7.0 4 0.2 1 1 G 1 1 4 1 1 Wind Turbine 6 82.05 3 1 -7.28 1 18 3 3 6 2074 291799 962112 8.5 6 0.8 2 G 1 1 G 5 1 1 6 2 Wind Turbine 6 6 87.05 6 3 1 1 8 3 6 6 2075 291789.9 962102 8.5 6 0.8 2 G G 1 1 8 8 2 Wind Turbine 6 6 68.71 3 3 5 5.28 1 1 18 3 5 6 6 2075 291789.9 962102 5.3 4 1 1 2 G G 1 1 8 8 2 Wind Turbine 6 6 59.9 3 1 4.25 1 1 18 3 6 6 2 6 7 7 7 291789.9 962102 5.3 4 1 1 2 G G 1 1 8 8 2 Wind Turbine 6 5 95.9 3 1 4.25 1 1 18 3 6 6 7 7 2 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 | | | 0.6 | R
G | | 12
8 | 2 2 | | 6 | | | | 3 3 | 6 | | 2075 2917899 962102 8.5 6 0.8 2 G 1 12 2 Wind Turbine 6 687.1 3 5.28 1 18 3 6 6 2077 291799 962102 7.3 4 1 1 2 G G 1 1 8 2 Wind Turbine 6 6 5.96 9 3 5 3 4 1 18 3 6 6 2077 291799 962102 5.4 4 1 1 2 G G 1 1 8 2 2 Wind Turbine 6 5 51.04 3 3 3.5 1 1 18 3 6 6 2 2 Wind Turbine 6 5 51.04 3 3 3.5 1 1 18 3 6 6 2 2 Wind Turbine 6 5 51.04 3 3 3.5 1 1 18 3 3 Wind Turbine 6 4 2.99 3 3 3 3 3 3 4 1 1 18 3 3 9 3 4 1 1 18 1 18 3 3 9 3 4 1 1 18 1 18 3 3 9 3 4 1 1 18 1 18 3 3 9 3 4 1 1 18 1 18 3 3 9 3 4 1 1 18 1 18 1 18 1 18 1 18 1 18 1 1 | 2073 291799.9 962112 | | 5.0 | G | 1 | 4 | 1 | Wind Turbine | 6 | 82.05 3 | -7.28 1 | 18 | 3 | 3 | | 2076 2917799 962102 7.3 4 1 2 G 6 1 8 2 WindTurbine 6 59.69 3 -4.25 1 18 3 6 6 2077 291799 962102 5.4 4 1 1 2 G 6 1 1 8 2 WindTurbine 6 59.60 4 3 -3.53 1 18 3 6 6 2078 291799 962102 4.9 4 1.1 3 8 9 1.5 18 3 WindTurbine 6 42.99 3 3 -3.05 1 18 3 9 96 2079 291799 962102 4.2 4 0.8 2 G 1 1 8 2 G 6 1 1 8 3 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2075 291789.9 962102 | 8.5 6 | 0.2
0.8
2 | G
G | 1 | 6
12 | 2 2 | Wind Turbine
Wind Turbine | 6 | | | | 3 3 | 6 | | 2078 2917599 962102 4.9 4 1.1 3 R 1.5 18 3 WindTurbine 6 42.99 3 3 -3.05 1 18 3 9 2 2 WindTurbine 6 42.99 3 3 -3.05 1 18 3 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2076 291779.9 962102 | 7.3 4 | 1 2 | G | | 8 | 2 | Wind Turbine | 6 | 59.69 3 | -4.25 1 | 18 | 3 | 6 | | 2080 291739 9 962112 3.8 2 0.5 1 R 1.5 3 1 Wind Turbine 6 39.84 3 -2.68 1 18 3 3 2081 291739 9 962122 3.8 2 0.6 2 G 1 4 1 Wind Turbine 6 49.42 3 -3.02 1 18 3 3 | 2078 291759.9 962102 | 4.9 4 | 1.1 2 | R | | 8
18 | 3 | Wind Turbine | 6 | 42.99 3 | -3.05 | 18 | 3 | 9 | | 2081 291739.9 962122 3.8 2 0.6 2 G 1 4 1 Wind Turbine 6 49.42 3 -3.02 1 18 3 3 | | | | G
R | | 8 3 | 2 | | 6 | | | | 3 3 | 6 | | Avgr. 1311373 3VL1312 3.5] 2 U.S 1 (V.S (V | 2081 291739.9 962122 | 3.8 2 | 0.6 2 | G | 1 | 4 | 1 | Wind Turbine | 6 | 49.42 3 | -3.02 | 18 | 3 | 3 | | | 2002 272/33.3 302132 | | 0.3 | | 1 | 2 | - | wind receive | J | 33.43 | -3.23 | 10 | • | | | 2083 291729.9 962132
2084 291719.9 962132
2085 291709.9 962132
2086 291709.9 962112
2087 291709.9 962112
2088 29190.9 962102
2090 291919.9 962102
2091 291719.9 962112
2092 291729.9 962112
2093 291729.9 962112
2094 291729.9 962102
2095 292009.9 962041
2096 292009.9 962041 | 3.9 2 3.9 2 4.1 4 3.0 2 2.1 2 1.9 1 1.9 1 2.1 2 3.2 2 3.9 2 3.4 2 3.7 2 1.9 1 1.9 1 | 03 1 1 08 2 11 3 1 1 2 08 2 1 1 2 08 2 2 08 2 0 6 0 3 1 0.7 0.6 0.4 0.3 1 1 0.3 1 1 | 1 R G G G G G G G G G | 15
1
15
15
15
15
1
1
1
15
1
1
1
15 | 3
4
18
6
6
3
2
4
6
2
4
6
6 | 1
1
3
2
2
1
1
1
2
1
2 | Wind Turbine | 6
6
6
6
6
6
6
6
6 | 57.79 3 58.16 3 50.21 3 50.21 3 50.71 3 41.43 3 32.29 3 82.862 3 83.839 3 88.25 3 77.80 3 77.80 3 77.80 3 77.86 3 | -2.60 1 1 -1.95 1 1 -1.31 1 1 -1.277 1 1 -1.45 1 1 -1.41 1 1 -1.74 1 1 -2.38 1 1 -1.71 1 1 -1.99 1 1 -1.75 1 | 18
18
18
18
18
18
18
18
18
18
18
18 | 3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 | 3 3 9 6 6 6 3 3 3 6 6 3 3 3 6 6 3 3 3 6 6 3 3 3 6 6 3 3 3 6 6 6 3 3 3 5 6 6 6 6 | |--
--|--|---|--|--|---|--|--|--|---|--|--|--| | 2097 292010.3 962922 2098 292009.9 962913 2098 292009.9 962913 2099 292009.7 962902 2100 292010.1 962891 2101 292010.8 962862 2102 292009.8 962862 2104 29299.8 962862 2106 292999.0 962852 2107 292009.8 962862 2108 292019.7 962851 2109 292030.4 962852 2110 29209.9 962862 2111 292019.9 962862 2111 292019.9 962862 2111 292019.9 962862 2111 292019.9 962862 2111 292019.9 962862 | 2.4 2 2.8 2 2.8 2 2.5 2 2.5 2 2.7 1 1.6 1 1.6 1 2.1 2 2.5
2 2.5 2 | 0.5 1 0.5 1 0.7 2 1.2 3 1.3 1.4 3 1.2 3 1.3 1.3 1.4 3 1.2 1.5 0.8 2 0.6 0.6 2 0.6 1.1 3 3 1.2 3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1 | 1 G 1 G 2 G 3 G 3 F 4 R 2 R 3 G 3 G 3 G 4 G 2 G 4 G 2 G 4 G 2 G 4 G 2 G 4 G 3 G 3 G 4 G 4 G 4 G 4 G 4 G 5 G 6 G 7 G 7 G 8 G 8 G 8 G 8 G 8 G 8 G 8 G 8 G 8 G 8 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2
4
6
6
9
6
3
3
3
4
4
6 | | Wind Turbine | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 29.69 3 17.23 3 17.23 3 18.83 2 3.37.7 3 3.13.70 3 10.30 3 10.50 3 10. | -1.51 1 -1.04 1 -0.49 1 -0.09 1 -0.24 1 -0.67 1 -1.04 1 -1.17 1 -1.19 1 -1.44 1 -1.40 1 -1.20 1 -0.91 1 -0.56 1 -0.79 1 -0.44 1 | 18 18 18 18 18 18 18 18 18 18 18 18 18 1 | 3
3
3
3
3
3
3
5
5
5
5
5
5
5
5
5
5
5
5
5 | 3
3
3
6
6
6
6
6
3
3
3
3
3
3
6
6
6
6
6
6 | | 2113 3920020 92885 2114 392019.5 962891 2115 392018.6 962912 2116 392019.2 962922 2117 392019.6 962932 2118 392019.1 962942 2119 392029.9 962932 2120 392029.4 962911 2121 392029.8 962901 2121 392039.8 962901 2121 392039.8 962901 2122 392030.9 962901 2123 392030.0 962981 2125 392033.3 962874 2125 392033.3 962874 2125 392036.6 962862 2127 392039.7 962871 | 25 2 3.1 2 3.1 2 6.6 2 1.9 1 1.9 1 1.9 1 2.8 2 2.5 2 2 | 13 3 3 0.8 2 0.4 1 0.3 1 1 0.6 0.6 0.4 1 0.3 1 1 0.9 1 1 2 0.9 1 1 2 0.9 1 1 2 1 1 2 1 2 1 1 1 2 1 2 1 1 1 1 1 | G G R G G G G G G G G G G G G G G G G G | 1 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 6 6 2 2 2 1 1 1 6 6 2 4 4 4 9 9 4 6 6 6 6 6 6 | | Wind Turbine | 6
6
6
6
6
6
6
6
6
6
6
6 | 30.20 3 27.27 30 3 29.36 3 35.54.2 3 42.99 3 51.11 3 50.24 3 38.8.7 3 38.8.2 3 37.01 3 37.7.1 3 40.58 1 3 59.54 3 59.54 3 59.54 3 | -0.05 1 -0.30 1 -1.17 1 -1.67 1 -1.96 1 -2.21 1 -2.18 1 -1.29 1 -1.83 1 -0.91 1 -0.54 1 -0.14 1 -0.05 1 -0.33 1 -0.02 1 -0.04 1 | 18 18 18 18 18 18 18 18 18 18 18 18 18 1 | 3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 | 6
6
3
3
3
3
6
3
3
6
3
6
6
3
6
6 | | 2129 292039.8 9c2892 2130 392039.5 9c2901 2131 392039.5 9c2912 2132 392040.1 9c2922 2133 392040.2 9c2932 2134 392050.7 9c2921 2135 392050.0 9c2911 2136 392055.5 9c2882 2139 392050.2 9c2872 2140 292050.3 9c2872 2140 292050.3 9c2881 2141 292059.7 9c2921 2142 292059.8 9c5902 2143 392060.1 9c5912 2144 292059.7 9c5912 | 2.5 2 2.6 2 2.9 1 2.9 1 2.8 2 2.5 2 2.5 2 2.5 2 2.5 2 2.5 2 2.7 2 3.2 2 3.8 2 3.6 2 3.0 2 2.6 2 | 11 3 3 0.8 13 3 11 3 3 7 0.7 2 7 1 2 1 2 0.8 2 1 1 2 0.8 2 1 1 2 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 | 3 R 3 R 2 G G G G G G G G G G G G G G G G G G G | 15
15
1
1
1
1
1
1
1
1
1
1
1
1
1 | 9 4 6 3 4 4 4 6 6 4 2 4 3 4 2 2 | | Wind Turbine | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 17.28 3 18.67 3 18.67 3 18.8.27 3 18.8.22 3 18.8.25 3
18.8.25 3 18 | -0.77 1 -1.13 1 -1.54 1 -1.99 1 -2.39 1 -2.15 1 -1.76 1 -1.39 1 -0.63 1 -0.63 1 -1.18 1 -1.15 1 -1.45 1 -1.45 1 -1.45 1 -1.45 1 -1.46 1 -1.99 1 -2.33 1 | 18 18 18 18 18 18 18 18 18 18 18 18 18 1 | 3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 | 6
6
3
6
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 | | 2145 292096.8 9c-912 2146 292097.7 9c-901 2147 292070.4 9c-889 2148 292089.1 9c-902 2149 292089.1 9c-902 2159 29207.7 9c-8242 2151 292094.0 9c-822 2151 292094.0 9c-822 2152 29208.0 9c-820 2153 292125. 9c-2777 2154 29214.0 9c-8208 2155 29215.7 9c-276 2155 29215.7 9c-276 2157 29217.3 9c-275 2157 29217.3 9c-275 2158 29217.1 9c-2708 2159 29202.6 9c-2717 2160 29212.68 9c-2717 | 4.1 4 3.9 2 3.3 2 2.9 2 2.7 2 2.7 2 2.7 2 2.7 2 2.7 2 2.5 2 2.8 2 2.8 2 2.8 2 2.9 2 2.5 2 | 03 1 1 03 1 1 03 1 1 0 1 0 1 0 1 0 1 0 1 | 1 | 15
15
1
1
1
15
1
1
1
15
1
1
15
1
15
1 | 6
3
4
2
3
6
9
4
4
4
9
6
9
9
9
9 | | moprant Habitat imporant imporan | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | S8-91 3 71,164 3 74,63 3 S5,230 3 S9,79 3 S9,79 3 S3,40 3 S7,718 3 S5,33 3 S9,39 3 S5,33 3 S9,39 S9, | 3.29 1 2.86 1 3.15 1 2.41 1 2.41 1 1.41 1 1.99 1 2.77 1 2.14 1 1.44 1 0.91 1 0.38 1 -0.02 1 1.61 1 1.50 1 | 24 24 24 24 24 24 24 24 24 24 24 24 24 2 | 3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 | 6
3
3
3
3
6
6
6
3
3
3
6
6
6
6
6
6
6
6
6 | | 116 292176 948679 116 292189 948679 116 292189 948679 116 292189 948679 116 292189 948679 116 292189 96879 116 292189 96879 116 292189 96879 116 292189 96879 116 292189 96879 116 292189 96879 116 292189 116 29 | 43 4 43 4 43 1 13 1 5.8 4 6.2 4 6.3 4 5.9 4 6.3 4 6.3 4 6.2 4 6.3 4 6.3 4 6.2 4 6.3 6 6.3 | 0.2 1 0.3 1 0.3 1 0.9 0.4 0.5 0.4 0.4 1 0.5 0.5 0.6 2 0.6 0.5 0.6 0.6 0.5 0.6 0.7 0.7 0.5 1 | = | 15
15
1
1
1
1
1
1
1
15
15
15 | 5
6
2
4
4
4
4
4
12
6
4
4
4 | | wind furbine Wind Turbine | 6
6
8
8
6
6
6
6
6
6
6
6
6
8
8
8 | 3,5,5,6,7,6,7,6,7,6,7,6,7,6,7,6,7,6,7,6,7 | 15 1 -2.56 1 -1.82 1 0.01 1 156 1 117 1 -0.93 1 -0.93 1 -0.02 1 -0.06 1 -0.06 1 -0.34 1 1.13 1 0.73 1 0.16 1 0.16 1 | 18
18
32
24
18
18
18
24
18
24
24
24
24
24
24 | | 3
6
5
3
3
3
3
3
6
6
6
3
3
3 | | 2177 2916995 962452 2178 2916879 762452 2179 2916797 962452 2180 2916697 962452 2181 2916506 962452 2182 2916466 962452 2183 2916202 962451 2185 2916111 962443 2185 2916181 962442 2185 2916513 962442 2185 2916537 962442 2190 2916593 962442 2190 2916593 962442 | 5.8 4
6.1 4
6.3 4
6.1 4
5.8 4
6.2 4
6.2 4
6.1 6
6.1 6
5.7 4
5.8 4
5.9 4
6.3 4 | 0.8 2 2 1 0.4 1 1 0.5 1 0.5 1 1 0.5 1
0.5 1 0. | 2 | 1
1
15
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | 8
4
6
4
4
4
4
8
8
4
12
6
4
8
8 | | Important Habitat Important Habitat Important Habitat Important Habitat Important Habitat Wind Turbine | 8 8 8 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 21.54 3 21.18 3 22.64 3 3.05.43 3 3.03.22 3 3.03.23 3 3.13.16 3 3.15.29 3 3.27.65 3 27.765 3 27.293 3 37.048 3 37.197 3 37.799 3 35.40 3 | 1.07 1 1.52 1 2.13 1 2.78 1 0.30 1 0.68 1 1.06 1 0.70 1 0.28 1 1.20 1 1.64 1 2.03 1 1.90 1 1.70 1 1.15 1 | 24
24
24
24
18
18
18
18
18
18
18
18
18 | | 6
3
6
3
3
3
3
3
3
3
3
3
6
6
3
3
6
6
3
6
6
3
3
3
3
3
3
3
3
3
6
6
6
6
6
6
6
7
7
8
8
8
8
8
8
8
8
8
8
8 | | 2192 29166939 962443
2193 2916938 962442
2194 29168937 962441
2195 2917005 962442
2196 29170939 962441
2197 291710.2 962431
2199 2916937 962431
2200 29166939 962431
2202 29165949 962431
2203 29164946 962432
2204 2916593 962432
2205 2916593 962432
2206 2916593 962432
2206 2916593 962431
2207 2916157 962432 | 63 4 63 4 63 4 61 4 57 4 62 4 63 4 64 4 64 4 64 4 64 4 65 4 64 4 65 4 67 4 68 4 68 4 68 4 68 4 68 4 68 4 68 4 68 | 03 1 1 05 1 07 02 1 02 1 03 1 05 1 05 1 05 1 05 1 05 1 05 1 05 | 1 R 1 R 1 G 6 1 6 G 1 G 1 G 1 G 2 G 1 G 2 G 1 G 1 G 1 G 1 G 1 G 1 G 1 G 1 G 1 G 1 | 15
1
1
1
15
15
15
15
1
1
1
1
1
1
1 | 5 4 4 8 6 6 6 4 8 4 4 4 8 4 4 8 4 4 | | important Habitat Ha | 8 8 8 8 8 8 8 8 8 6 6 6 6 6 6 6 6 | 34.04 3 31.52 3 31.71 3 31.48 3 31.71 3 41.57 3 41.65 3 41.62 3 42.08 3 42.00 3 342.00 3 35.22 3 31.55 3 30.51 3 32.40 3 | 3.5.3 1 2.90 1 2.4.1 1 1.81 1 1.139 1 2.12 1 2.6.8 1 3.82 1 4.5.1 1 2.0.6 1 2.6.2 1 2.87 1 2.98 1 2.69 1 3.4.2 1 | 24
24
24
24
24
24
24
24
24
18
18
18
18 | 3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 | 6
6
6
6
6
3
8
6
6
3
3
6
6
3
3
3
3
3 | | 2008 3916300 862422
2209 2916593 8 962422
2210 2916593 7 962422
2211 29165061 962422
2212 3916706 962423
2213 3916793 962422
2214 3916900 962422
2215 2917104 96242
2216 2917093 962412
2216 2916993 962412
2218 2916993 962412
2220 2916593 962412
2222 2916593 962412
2222 291693693 962412
2222 291693693 962412 | 3.8 2 3.9 2 3.9 2 5.5 4 6.5 4 6.5 4 6.5 4 6.5 4 6.5 4 6.5 4 7.1 4 8.3 6 6.8 4 6.5 4 4.3 3 4.3 3 9.3 9 3.9 2 3.9 2 3.9 2 | 0.5 1 0.4 1 0.5 1 | 1 R G G 1 G G 1 G G G 2 G G G G G G G G G G G G G G G G | 1 1 15 15 15 1 1 15 1 1 1 1 1 1 1 1 1 1 | 2
3
6
4
6
4
4
6
4
6
8
8
8
2
4
3 | | Wind Turbine Wind Turbine Wind Turbine Wind Turbine Wind Turbine Important Habitat I | 6
6
8
8
8
8
8
8
8
8
8
6
6 | 40.23 3 40.05 3 43.75 3 49.67 3 5.2.55 3 5.1.12 3 5.0.88 3 61.05 3 61.42 3 63.30 3 83.41 3 83.31 3 90.33 3 | 3.63 1 3.47 1 3.29 1 2.25 1 5.24 1 4.67 1 4.10 1 2.69 1 3.55 1 4.58 1 5.03 1 6.22 1 3.53 1 3.92 1 4.08 1 4.30 1 | 18
18
18
18
24
24
24
24
24
24
24
18
18 | 3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 | 3
3
3
6
3
6
3
3
6
3
6
6
3
3
6
6
3
3
6
3
6
3
8
6
9
7
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9 | | 2224 291619.8 962412 2225 291619.7 962402 2226 291630.1 962402 2227 291639.9 962402 2228 291650.5 962402 2229 291659.2 962403 2230 291669.9 962402 2231 291680.1 962402 | 4.3 4 3.9 2 3.7 2 3.6 2 3.7 2 3.9 2 4.1 4 5.0 4 | | 1 G 1 R 1 R 2 R 2 G R 2 G R 2 R 2 R | 1
1.5
1
1.5
1.5
1.5
1.5
1.5 | 4
3
2
3
6
4
12 | 1
1
1
2
1
2
2 | Wind Turbine Important Habitat | 6
6
6
6
6 | 51.29 3
51.30 3
50.23 3
50.76 3
52.92 3
55.70 3
71.167 3
71.18 3 | 4.17 1 4.85 1 4.95 1 4.76 1 4.43 1 4.06 1 3.66 1 6.36 1 | 18
18
18
18
18
18
18
24 | 3
3
3
3
3
3
3
3 | 3
3
3
6
6
6 | | 2222 201500 1 052402 | c al | 0.2 | le . | | | | Towns and the block | 201 | 2 | F 00 | 24 | , | | |--|-----------------------------|-----------------------------|--------|-----------------|---------------|--------|---|-----------------------------|--------------|-------------------------------|----------------|--------|-------------| | 2232 291690.1 962402
2233 291699.4 962402
2234 291709.5 962402 | 7.0 4
8.6 6 | 0.3 1
0.6 2
0.3 1 | G
R | 1
1
1.5 | 4
8
9 | 2
2 | Important Habitat
Important Habitat
Important Habitat | 8 70.8
8 70.7
8 71.4 | 19 3 | 5.86 1
5.23 1
4.37 1 | 24
24
24 | 3 3 | 6 | | 2235 291718.1 962397
2236 291658.4 962393 | 9.4
3.8
2 | 0.6
1 2 | G
G | 1 1 | 12
4 | 2 | Important Habitat
Wind Turbine | 8 76.2
6 74.2 | 3 | 3.57 1
4.60 1 | 24
18 | 3 | 6 | | 2237 291649.5 962393
2238 291639.4 962392 | 3.6
3.3
2 | 0.4 1
0.3 1 | R
R | 1.5
1.5 | 3 3 | 1
1 | Wind Turbine
Wind Turbine | 6 71.8
6 70.6 | 3 | 4.97 1
5.31 1 | 18
18 | 3 | 3 3 | | 2239 291629.2 962393
2240 291619.8 962391 | 3.0
2.8
2 | 0.3 1
0.3 1 | G
G | 1 1 | 2 2 | 1
1 | Wind Turbine
Wind Turbine | 6 68.5
6 71.5 | | 5.49 1
5.47 1 | 18
18 | 3 3 | 3
3 | | 2241 291614.2 962390
2242 291589.6 962772 | 2.8
5.2 2 | 0.2
0.5
1 | R
G | 1.5
1 | 3
4 | 1
1 | Wind Turbine
Important Habitat | 6 73.4
8 66.6 | 3 | 5.43 1
-1.67 1 | 18
24 | 3 3 | 3
3 | | 2243 291589.7 962782
2244 291589.6 962792 | 5.5 4
5.2 4 | 0.2
0.1
1 | R
R | 1.5
1.5 | 6
6 | 2
2 | Important Habitat
Important Habitat | 8 57.1
8 48.7 | | -1.14 1
-0.86 1 | 24
24 | 3 3 | 6
6 | | 2245 291589.3 962801
2246 291589.8 962811 | 5.5 4
5.6 4 | 0.3 1
0.3 1 | G
G | 1 1 | 4 4 | 1
1 | Important Habitat
Important Habitat | 8 40.8
8 33.4 | | -0.97 1
-1.06 1 | 24
24 | 3 3 | 3
3 | | 2247 291589.9 962822
2248 291589.7 962832 | 5.7 4
5.9 4 | 0.4
0.3
1 | R
R | 1.5
1.5 | 6
6 | 2
2 | Important Habitat
Important Habitat | 8 27.8
8 25.5 | 3
59 3 | -1.24 1
-1.45 1 | 24
24 | 3 3 |
6
6 | | 2249 291589.6 962842
2250 291579.7 962842 | 6.1 4
6.9 4 | 0.2
0.3
1 | R
G | 1.5
1 | 6
4 | 2
1 | Important Habitat
Important Habitat | 8 25.6
8 35.5 | 3 | -1.36 1
-2.65 1 | 24
24 | 3 | 6
3 | | 2251 291570.0 962841
2252 291580.0 962821 | 5.7 4
8.4 6 | 0.5 1
0.3 1 | R
G | 1.5
1 | 6
6 | 2 2 | Wind Turbine
Important Habitat | 6 41.6
8 37.1 | 4 3 | 3.84 1
-2.59 1 | 18
24 | 3 | 6
6 | | 2253 291579.5 962812
2254 291579.7 962802 | 8.7 6
9.0 6 | 0.2 1
0.4 1 | G
R | 1
1.5 | 6
9 | 2 2 | Important Habitat
Important Habitat | 8 41.6
8 47.3 | 3 | -2.46 1
-2.35 1 | 24
24 | 3 3 | 6 | | 2255 291579.6 962792
2256 291579.8 962782
2257 291579.9 962772 | 9.2 6
9.0 6
8.0 6 | 0.3 1
0.3 1
0.3 1 | G | 1 | 6 | 2 2 | Important Habitat
Important Habitat | 8 54.4
8 62.3
8 70.6 | 3 | -2.23 1
-2.32 1
-2.57 1 | 24
24
24 | 3 | 6 | | 2257 291579.9 962772
2258 291570.0 962772
2259 291569.9 962781 | 6.1
5.8
4 | 0.5
0.7
0.4
1 | G | 1 | 8 | 2 | Important Habitat
Wind Turbine
Wind Turbine | 6 70.8 | 3 | 3.74 1
3.96 1 | 18
18 | 3 | 6 | | 2260 291569.9 962792
2261 291569.5 962802 | 6.0 4 | 0.2 1 | R | 1.5 | 6 | 2 | Wind Turbine
Wind Turbine
Wind Turbine | 6 54.9
6 48.4 | 3 | 4.11 1
4.02 1 | 18
18 | 3 | 6 | | 2262 291569.8 962812
2263 291570.0 962821 | 6.0 4 | 0.4
0.4
0.3 | G
R | 1
1.5 | 4 | 1 2 | Wind Turbine
Wind Turbine | 6 43.6 | 9 3 | 3.96 1
3.91 1 | 18
18 | 3 | 3 | | 2264 291559.7 962842
2265 291559.7 962822 | 5.7 4
5.5 4 | 0.3 1
0.5 1 | G | 1 1 | 4 4 | 1
1 | Wind Turbine
Wind Turbine | 6 32.0
6 30.8 | | 2.81 1
2.89 1 | 18
18 | 3 | 3 | | 2266 291559.9 962812
2267 291559.8 962802 | 5.0 4
4.7 4 | 0.3
0.4
1 | R
R | 1.5
1.5 | 6
6 | 2
2 | Wind Turbine
Wind Turbine | 6 34.5
6 41.0 | 3 | 3.12 1
3.20 1 | 18
18 | 3 3 | 6 | | 2268 291559.7 962791
2269 291560.4 962772 | 4.6
3.6
2 | 0.4 1
0.5 1 | R
R | 1.5
1.5 | 6
3 | 2
1 | Wind Turbine
Wind Turbine | 6 48.6
6 65.4 | | 3.26 1
3.12 1 | 18
18 | 3 | 6
3 | | 2270 291550.1 962772
2271 291550.0 962792 | 3.7 2
4.6 4 | 0.6
0.7
2 | G
G | 1 | 4
8 | 1
2 | Wind Turbine
Wind Turbine | 6 61.7
6 42.5 | 96 3 | 2.53 1
2.48 1 | 18
18 | 3 | 3
6 | | 2272 291549.8 962802
2273 291549.5 962822 | 4.7 4
5.3 4 | 0.6 2
0.3 1 | G
G | 1 | 8
4 | 2
1 | Wind Turbine
Wind Turbine | 6 34.6
6 21.2 | 3 | 2.38 1
1.92 1 | 18
18 | 3 | 6
3 | | 2274 291549.2 962842
2275 291539.8 962842 | 5.7 4
5.7 4 | 0.4 1
0.3 1 | 6 | 1 | 4 | 1 | Wind Turbine
Wind Turbine | 6 22.7
6 15.5 | 3 | 1.77 1
0.84 1 | 18
18 | 3 3 | 3 3 | | 2276 291540.1 962822
2277 291539.8 962811 | 5.2 4
4.9 4
4.7 4 | 0.5 1
0.6 2
0.7 2 | G G | 1.5 | 8 | 2 | Wind Turbine
Wind Turbine
Wind Turbine | 6 13.1
6 20.9
6 30.0 | 3 | 1.14 1
1.46 1
1.60 1 | 18
18
18 | 3 | 6 | | 2278 291540.4 962802
2279 291539.7 962792
2280 291540.0 962782 | 4.6
4.6
4.6 | 0.7 2 2 | R | 1.5 | 12 | 2 | Wind Turbine Wind Turbine Wind Turbine | 6 39.3
6 48.8 | 3 | 1.66 1
1.78 1 | 18 | 3 | 6 | | 2280 291540.0 962782
2281 291539.8 962772
2282 291530.8 962772 | 4.5
4.1
4.6
4 | 0.3 1
0.4 1
0.3 1 | R
R | 1
1.5
1.5 | 6 | 2 2 | Wind Turbine Wind Turbine Wind Turbine | 6 59.0
6 57.8 | 7 3 | 1.78 1
1.88 1
1.17 1 | 18
18
18 | 3 | 6 | | 2283 291519.9 962792
2284 291518.8 962801 | 4.6
4.6
4.6 | 0.3 1
0.1 1 | R
R | 1.5
1.5 | 6 | 2 2 | Wind Turbine
Wind Turbine
Wind Turbine | 6 39.2
6 31.1 | 15 3 | 0.07 1
-0.13 1 | 18
18 | 3 3 | 6
6 | | 2285 291519.4 962811
2286 291509.5 962812 | 4.9
5.3
4 | 0.3 1
0.3 1 | R
G | 1.5 | 6
4 | 2
1 | Wind Turbine
Wind Turbine | 6 21.8
6 27.4 | 3
14 3 | -0.21 1
-1.03 1 | 18
18 | 3 3 | 6 3 | | 2287 291509.9 962822
2288 291519.6 962822 | 5.2
5.2
4 | 0.2 1
0.5 1 | G
G | 1 1 | 4 4 | 1
1 | Wind Turbine
Wind Turbine | 6 21.7
6 13.0 | 70 3
00 3 | -1.37 1
-0.59 1 | 18
18 | 3 3 | 3
3 | | 2289 291519.1 962842
2290 291510.2 962842 | 5.5 4
5.3 4 | 0.5 1
0.6 2 | G
R | 1
1.5 | 4
12 | 1 2 | Wind Turbine
Wind Turbine | 6 16.4
6 23.0 | 3 | -1.21 1
-2.06 1 | 18
18 | 3 | 3
6 | | 2291 291500.3 962841
2292 291491.9 962842 | 5.3 4
5.9 4 | 0.3
0.9
2 | G
G | 1 | 4
8 | 1 2 | Wind Turbine
Wind Turbine | 6 31.7
6 39.5 | 3 | -2.89 1
-3.67 1 | 18
18 | 3 | 3
6 | | 2293 291489.9 962821
2294 291499.9 962822
2295 291500.1 962811 | 6.7 4
6.1 4
6.6 4 | 0.3 1
0.2 1 | G | 1 | 4 | 1 | Wind Turbine
Wind Turbine
Wind Turbine | 6 41.0
6 31.2 | 15 3 | -3.39 1
-2.27 1
-2.03 1 | 18
18 | 3 | 3 | | 2296 291500.1 962811
2296 291500.3 962801
2297 291509.5 962802 | 6.2 4 | 0.4 1
0.2 1
0.2 1 | R | 1.5 | 6 | 2 | Wind Turbine Wind Turbine Wind Turbine | 6 35.2
6 41.4
6 35.0 | 18 3 | -2.03 1
-1.69 1
-0.88 1 | 18
18
18 | 3 | 3
6
3 | | 2298 291512.7 962792
2299 291510.1 962782 | 4.6
4.5
4.5 | 0.2
0.3
1
0.6
2 | 6 | 1 | 4 8 | 1 2 | Wind Turbine
Wind Turbine
Wind Turbine | 6 41.7 | 3 3 | -0.51 1
-0.61 1 | 18
18 | 3 | 3 | | 2300 291510.8 962772
2301 291518.4 962773 | 4.5
4.6
4 | 0.7
0.4
1 | R
R | 1.5
1.5 | 12
6 | 2 2 | Wind Turbine
Wind Turbine | 6 60.7 | 3 3 | -0.43 1
0.17 1 | 18
18 | 3 | 6 | | 2302 291499.3 962771
2303 291490.3 962771 | 4.1 4
5.7 4 | 0.3
0.4
1 | R
G | 1.5 | 6 4 | 2 | Wind Turbine
Minor Watercourse | 6 66.1
6 59.7 | 4 3 | -1.27 1
11.52 2 | 18
18 | 3 | 6 | | 2304 291489.8 962782
2305 291489.6 962792 | 6.5
6.9
4 | 0.4
0.4
1 | G
G | 1 1 | 4 4 | 1
1 | Wind Turbine
Wind Turbine | 6 62.2
6 55.1 | 15 3 | -2.27 1
-2.63 1 | 18
18 | 3 | 3 3 | | 2306 291489.6 962803
2307 291489.3 962811 | 6.9 4
6.8 4 | 0.2
0.5
1 | G
R | 1
1.5 | 4
6 | 1
2 | Wind Turbine
Wind Turbine | 6 48.7
6 44.7 | 3 | -2.98 1
-3.29 1 | 18
18 | 3 | 3
6 | | 2308 290915.6 962496
2309 290920.5 962491 | 5.1 4
5.9 4 | 1 2
0.1 1 | R
G | 1.5
1 | 12
4 | 2
1 | Important Habitat
Important Habitat | 8 51.6
8 49.0 | 9 3 | -2.43 1
-1.80 1 | 24
24 | 3 | 6
3 | | 2310 290920.2 962482
2311 290919.8 962472 | 7.2
7.2
4 | 0.2 1
0.3 1 | G
R | 1
1.5 | 4
6 | 2 | Important Habitat
Important Habitat | 8 40.1
8 30.1 | 1 3 | -1.14 1
-0.20 1 | 24
24 | 3 | 6 | | 2312 290920.0 962452
2313 290919.3 962443
2314 290929.7 962442 | 4.7 4
4.1 4
4.2 4 | 0.8 2
1.3 3 | G
R | 1.5 | 8
18 | 3 | Important Habitat
Important Habitat
Important Habitat | 8 13.0
8 6.1
8 14.5 | .0 4 | 0.69 1
0.27 1
1.03 1 | 24
32
24 | 3
5 | 15 | | 2315 290929.9 962452
2316 290930.2 962462 | 3.7 2 | 0.3 1 | G | 1 | 2 | 1 1 | Important Habitat Important Habitat | 8 20.2
8 27.3 | 3 | 1.15 1
1.50 1 | 24 | 3 | 3 | | 2317 290931.3 962472
2318 290930.2 962482 | 7.5 4
7.5 4 | 0.3 1
0.3 1 | G | 1 | 4 | 1 1 | Important Habitat
Important Habitat | 8 35.6
8 43.6 | 3 | 1.04 1
-0.19 1 | 24 | 3 | 3 | | 2319 290940.1 962481
2320 290940.0 962472 | 5.8 4
5.7 4 | 0.2
0.3
1 | R
G | 1.5
1 | 6
4 | 2
1 | Important Habitat
Important Habitat | 8 48.4
8 41.2 | 19 3 | 0.33 1
1.42 1 | 24
24 | 3 | 6 | | 2321 290939.6 962462
2322 290940.1 962443 | 1.2
1.6 1 | 1
0.5
1 | G
G | 1 1 | 2
1 | 1
1 | Important Habitat
Important Habitat | 8 33.8
8 19.5 | 3 | 1.48 1
0.04 1 | 24
24 | 3 | 3
3 | | 2323 290940.3 962432
2324 290939.7 962412 | 2.8
3.1
2 | 0.7 2
0.4 1 | G
G | 1 | 4
2 | 1 1 | Important Habitat
Important Habitat | 8 8.5
8 1.4 | 12 4 | 0.07 1
-0.02 1 | 32
32 | 5
5 | 5
5 | | 2325 290940.3 962402
2326 290950.0 962412
2327 290949.8 962422 | 3.0 2
1.6 1 | 0.2 1
0.3 1 | G
R | 1 1.5 | 1.5 | 1 | Important Habitat
Important Habitat | 8 4.5
8 1.0 | 02 4 | -0.25 1
0.00 1
0.02 1 | 32
32 | 5 | 5 | | 2328 290949.5 962432
2329 290950.2 962441 | 1.2
0.8
1
0.8 | 0.4
1.1
3
0.8
2 | G | 1 | 3 | 1 | Important Habitat
Important Habitat
Important Habitat | 8 1.5
8 8.8
8 17.8 | 80 4 | -0.13 1
-0.24 1 | 32
32
24 | 5 | 5 | | 2330 290949.8 962451
2331 290950.0 962462 | 1.1 1 | 1 2 0.9 2 | 6 | 1 1 | 2 2 | 1 1 | Important Habitat Important Habitat | 8 28.1
8 38.4 | 3 | -0.24 1
-0.32 1
-0.23 1 | 24
24
24 | 3 | 3 3 | | 2332 290950.2 962472
2333 290959.3 962472 | 5.7 4
5.4 4 | 0.2
0.4
1 | R
G | 1.5
1 | 6
4 | 2
1 | Important Habitat
Important Habitat | 8 48.5
8 48.5 | | 1.41 1
-0.33 1 | 24
24 | 3 | 6 | | 2334 290959.5 962462
2335 290970.1 962462 | 1.6
1.6 | 0.6
0.3
1 | G
R | 1
1.5 | 2
1.5 | 1
1 | Important Habitat
Important Habitat | 8 38.5
8 38.5 | 3 | -0.02 1
0.21 1 | 24
24 | 3
3 | 3
3 | | 2336 290978.8 962462
2337 290969.4 962452 | 1.6 1
1.6 1 | 0.2 1
0.4 1 | G
G | 1 | 1
1 | 1
1 | Important Habitat
Important Habitat | 8 41.0
8 29.3 | 3 | 0.43 1
0.09 1 | 24
24 | 3 | 3
3 | | 2338 290959.6 962452
2339 290959.5 962441 | 1.6 1
1.0 1 | 0.7
1 2 | G
R | 1 1.5 | 2 3 | 1 | Important Habitat
Important Habitat | 8 28.7
8 18.3 | 3 | -0.12 1
-0.21 1 | 24
24 | 3 3 | 3 3 | | 2340 290959.7 962432
2341 290909.2 962442
2342 290899.7 962443 | 0.8 1
1.9 1
2.2 2 | 0.6 2
1.6 3 | G | 1 1 1 | 3 | 1 | Important Habitat
Important Habitat | 8 8.8
8 1.4
8 0.5 | 13 4 | -0.12 1
-0.01 1
0.01 1 | 32
32
32 | 5 | 5 | | 2342 290899.7
962443
2343 290889.6 962442
2344 290899.6 962452 | 1.1
2.0
1 | 1.1 3 | 6 | 1 | 3 | 1 | Important Habitat
Important Habitat
Important Habitat | 8 0.9
8 5.7 | 9 4 | 0.01 1
0.02 1
-0.30 1 | 32
32
32 | 5 | 5 | | 2345 290909.9 962452
2346 290910.0 962462 | 2.6
2.6
2.6 | 0.3
0.5
1 | R
R | 1.5
1.5 | 3 | i | Important Habitat
Important Habitat | 8 9.4
8 18.8 | 4 | -0.12 1
-0.06 1 | 32
24 | 5 | 5 | | 2347 290909.4 962471
2348 290910.1 962482 | 6.6
6.5
4 | 0.4
0.2
1 | G
G | 1 1 | 4 4 | 1
1 | Important Habitat
Important Habitat | 8 27.1
8 37.1 | 9 3 | -0.75 1
-1.84 1 | 24
24 | 3 | 3 3 | | 2349 290910.1 962491
2350 290898.5 962472 | 4.3
6.7
4 | 0.3
0.1
1 | G
R | 1
1.5 | 4
6 | 1
2 | Important Habitat
Important Habitat | 8 45.7
8 23.7 | 1 3 | -2.55 1
-1.38 1 | 24
24 | 3 3 | 3
6 | | 2351 290899.2 962461
2352 290890.6 962462 | 3.2
4.6 2 | 0.6
0.8
2 | R
R | 1.5
1.5 | 6
12 | 2
2 | Important Habitat
Important Habitat | 8 13.6
8 13.7 | 57 3
78 3 | -0.39 1
-0.84 1 | 24
24 | 3 | 6
6 | | 2353 290889.2 962451
2354 290879.9 962441 | 3.5
0.7
1 | 0.7 2
1 2 | G
G | 1 | 4 2 | 1 | Important Habitat
Important Habitat | 8 3.4
8 6.0 | 9 4 | -0.20 1
0.00 1 | 32
32 | 5
5 | 5 | | 2355 291049.9 962142
2356 291000.3 962192
2357 290999 8 962182 | 1.4 1
2.5 2
2.5 2 | 0.8 2
0.3 1
0.8 2 | R | 1
1.5
1 | 3 | 1 | Important Habitat
Important Habitat | 8 110.7
8 43.4
8 49.5 | 18 3 | 0.91 1
0.43 1
0.80 1 | 24
24
24 | 3 | 3
3
3 | | 2357 290999.8 962182
2358 290999.8 962171
2359 290999.9 962162 | 2.5
2.7
2
3.1
2 | 0.8 2
0.8 2
0.6 2 | G | 1
1
1.5 | 4 | 1 | Important Habitat
Important Habitat
Important Habitat | 8 49.5
8 58.0
8 65.7 | 00 3 | 0.80 1
0.88 1
0.96 1 | 24
24
24 | 3 | 3 | | 2359 290999.9 962162
2360 290999.7 962151
2361 290999.3 962142 | 3.1
2.9
2.9
2.9 | 0.6 2
0.8 2
0.5 1 | R
G | 1.5
1.5
1 | 6 | 2 1 | Important Habitat
Important Habitat
Important Habitat | 8 65.7
8 75.3
8 83.8 | 3 | 0.96 1
1.08 1
1.14 1 | 24
24
24 | 3 | 6 3 | | 2362 290989.6 962142
2363 290979.5 962142 | 3.4
6.8
2 | 0.5
0.5
1
0.4 | R
G | 1.5 | 3 4 | 1 | Minor Watercourse
Minor Watercourse | 6 77.7 | 71 3 | 16.78 2
16.06 2 | 18
18 | 3 3 | 3 3 | | 2364 290969.5 962142
2365 290959.6 962142 | 13.9 6
12.1 6 | 0.4 1
0.5 1 | G
R | 1
1.5 | 6
9 | 2 2 | Minor Watercourse
Minor Watercourse | 6 62.1
6 55.5 | 11 3
59 3 | 14.18 2
12.09 2 | 18
18 | 3 3 | 6
6 | | 2366 290949.7 962141
2367 290999.8 962132 | 11.8
3.0
6 | 0.6
0.7 2 | R
G | 1.5
1 | 18
4 | 3
1 | Minor Watercourse Minor Watercourse | 6 49.8
6 81.9 | 35 3
98 3 | 10.32 2
17.32 2 | 18
18 | 3 3 | 9 3 | | 2368 290999.6 962122
2369 291000.1 962111 | 2.9 2
5.2 4 | 0.7 2
0.3 1 | G
R | 1
1.5 | 6 | 1 2 | Minor Watercourse
Minor Watercourse | 6 75.0
6 66.5 | 3
66 3 | 15.66 2
15.34 2 | 18
18 | 3 | 6 | | 2370 290999.9 962102
2371 290999.6 962091
2372 291019.5 962142 | 6.1 4
8.1 6 | 0.5 1
0.5 1 | K
G | 1.5
1
1.5 | 6 | 2 2 | Minor Watercourse
Minor Watercourse
Important Habitat | 6 58.8
6 51.5
8 93.5 | 3 | 14.61 2
13.85 2
2.14 1 | 18
18
24 | 3 | 6
6
3 | | 2372 291019.5 962142
2373 291029.6 962142
2374 291039.8 962142 | 2.4
2.0
1.4 | 0.5 1
0.5 1
0.9 2 | R
G | 1.5
1.5
1 | 3
1.5
2 | 1 | Important Habitat
Important Habitat
Important Habitat | 8 93.5
8 99.6
8 106.7 | 3 | 2.14 1
2.48 1
2.79 1 | 24
24
24 | 3 | 3
3
3 | | 2375 291219.9 961753
2376 291230.7 961752 | 4.1
4.8
4 | 0.4 1
0.5 1 | G
R | 1 1.5 | 4 | 1 2 | Important Habitat
Important Habitat | 8 0.4
8 1.4 | 17 4
17 4 | -0.02 1
0.08 1 | 32
32 | 5
5 | 5
10 | | 2377 291240.4 961752
2378 291249.9 961752 | 3.3
3.2
2 | 0.8
0.5
1 | G
G | 1 1 | 4 2 | 1 1 | Important Habitat
Important Habitat | 8 0.8
8 1.4 | 89 4
41 4 | 0.02 1
-0.02 1 | 32
32 | 5
5 | 5
5 | | 2379 291279.5 961742
2380 291270.2 961742 | 1.7 1
2.3 2 | 0.5 1
0.5 1 | R
R | 1.5
1.5 | 1.5
3 | 1 1 | Important Habitat
Important Habitat | 8 1.1
8 1.1 | 17 4
17 4 | -0.01 1
-0.01 1 | 32
32 | 5 | 5 | | | | | | | | | | | | | | | | | 2004 204252 5 254342 | a al | | le l | | | | | | | 22 | | | |--|----------------------|-------------------------|--------|----------|----------|---|--------------------|--------|--------------------|----------------|--------|----------------| | 2381 291259.5 961742
2382 291250.3 961742 | 3.0 2 3.1 2 | 0.5
0.5
1 | G | 1 | 2 | 1 Important Habitat 1 Important Habitat | 8 1.63
8 1.39 | 4 | -0.04 1
0.01 1 | 32
32 | 5 5 | 5 | | 2383 291239.7 961742
2384 291229.8 961742 | 2.8
4.2 4 | 0.4
0.3 | R | 1
.5 | 6 | 1 Important Habitat 2 Important Habitat | 8 1.50
8 1.30 | 4 | -0.01 1
-0.02 1 | 32
32 | 5 | 10 | | 2385 291220.2 961742
2386 291219.7 961731 | 4.1 4
4.3 4 | 0.4
0.5
1 | | 1
.5 | 6 | 1 Important Habitat 2 Important Habitat | 8 0.96
8 2.09 | 4 | 0.02 1
-0.07 1 | 32
32 | 5
5 | 5
10 | | 2387 291230.0 961732
2388 291239.9 961732 | 3.4
2.8
2 | 0.2
0.4
1 | | .5
1 | 3 2 | 1 Important Habitat Important Habitat | 8 1.26
8 1.35 | 4 | -0.01 1
-0.01 1 | 32
32 | 5
5 | 5
5 | | 2389 291249.7 961732
2390 291260.0 961732 | 3.0
2.6
2 | 0.5
0.2
1 | G | 1.5 | 2 | 1 Important Habitat 1 Important Habitat | 8 1.29
8 1.56 | 4 | -0.02 1
-0.02 1 | 32
32 | 5 | 5 | | 2391 291270.1 961732 | 2.4 2 | 0.5
0.5
1 | R | .5 | 3 | 1 Important Habitat | 8 1.38 | 4 | -0.01 1 | 32
32
32 | 5 | 5 | | 2392 291279.5 961732
2393 291280.5 961722 | 3.1 2 | 0.5 1 | G | .5
1 | 2 | 1 Important Habitat 1 Important Habitat | 8 1.54
8 0.84 | 4 | -0.04 1
-0.02 1 | 32 | 5 | 5 | | 2394 291269.7 961722
2395 291259.6 961721 | 3.0 2
2.9 2 | 0.5
0.4
1 | R | .5
.5 | 3 | 1 Important Habitat 1 Important Habitat | 8 1.53
8 3.37 | 4 | -0.07 1
0.11 1 | 32
32 | 5
5 | 5
5 | | 2396 291249.8 961722
2397 291239.7 961722 | 3.5
4.2
4 | 0.4
0.3
1 | | .5
1 | 3 | 1 Important Habitat 1 Important Habitat | 8 1.52
8 1.57 | 4 | -0.07 1
-0.09 1 | 32
32 | 5
5 | 5
5 | | 2398 291229.6 961722
2399 291219.7 961722 | 4.6
4.9
4 | 0.3
0.4
1 | | 1
.5 | 4 | 1 Important Habitat 2 Important Habitat | 8 1.65
8 1.52 | 4 | -0.11 1
-0.10 1 | 32
32 | 5
5 | 5
10 | | 2400 291219.8 961711
2401 291229.7 961712 | 6.1 4
4.7 4 | 0.5 1
0.4 1 | G | 1 | 4 | 1 Important Habitat 1 Important Habitat | 8 1.73
8 1.17 | 4 | -0.16 1
-0.08 1 | 32
32 | 5 | 5 | | 2402 291239.9 961712 | 4.8 4 | 0.5 | G | | 4 | 1 Important Habitat | 8 1.24 | 4 | -0.08 1 | 32 | 5 | 5 | | 2403 291249.7 961712
2404 291260.5 961712 | 4.3
3.6
2 | 0.5
0.5
1 | | 1 | 2 | 1 Important Habitat Important Habitat | 8 1.65
8 1.39 | 4 | -0.11 1
-0.05 1 | 32
32 | 5 | 5 | | 2405 291270.1 961712
2406 291269.7 961701 | 3.2 2
3.5 2 | 0.5
0.6 2 | | .5
.5 | 3
6 | 1 Important Habitat 2 Important Habitat | 8 1.45
8 6.75 | 4 | -0.05 1
-0.19 1 | 32
32 | 5
5 | 5
10 | | 2407 291259.7 961702
2408 291249.9 961702 | 3.4
4.1 2 | 0.1
0.2
1 | G | 1 | 2 | 1 Minor Watercourse 1 Minor Watercourse | 6 5.70
6 3.53 | 4 | 0.33 1
0.10 1 | 24
24 | 3 | 3 3 | | 2409 291239.5 961702
2410 291229.9 961702 | 5.0 4
4.1 4 | 0.5
0.6
2 | G | 1 | 4 | 1 Minor Watercourse
2 Important Habitat | 6 4.06
8 1.34 | 4 | 0.12 1
-0.10 1 | 24
32 | 3 5 | 3 | | 2411 291220.1 961702
2412 291217.9 961691 | 6.0 4 | 0.3
0.2
1 | | .5
1 | 6 | 2 Important Habitat 2 Minor Watercourse | 8 1.49
6 3.64 | 4 | -0.02 1
0.90 1 | 32
24 | 5 | 10 | | 2413 291227.8 961691 | 4.5
4.7
4 | 0.1 1 | | .5 | 6 | 2 Minor Watercourse | 6 3.40 | 4 | -0.19 1 | 24 | 3 | 6 | | 2414 291238.3 961691
2415 291248.1 961691 | 4.2 4 | 0.3 | | .5 | 6 | 1 Minor Watercourse 2 Minor Watercourse | 6 7.76
6 7.25 | 4 | -0.31 1
-0.30 1 | 24 | 3 | 6 | | 2416 291258.3 961690
2417 291257.9 961681 | 3.4
4.5
4 | 0.7 2 | G | .5
1 | 8 | 2 Important Habitat 2 Important Habitat | 8 7.66
8 3.40 | 4 | -0.40 1
0.00 1 | 32
32 | 5
5 | 10
10 | | 2418 291247.9 961681
2419 291238.0 961681 | 5.2 4
5.3 4 | 0.2
0.2
1 | | .5
1 | 6
4 | 2 Important Habitat
1 Important Habitat | 8 2.96
8 3.50 | 4 | -0.07 1
-0.31 1 | 32
32 | 5
5 | 10
5 | | 2420 291228.1 961681
2421 291218.0 961681 | 7.8 4
7.6 4 | 0.4
0.6
2 | R
G | .5
1 | 6
8 | 2 Important Habitat 2 Minor Watercourse | 8 3.24
6 3.30 | 4 | -0.33 1
-0.04 1 | 32
24 | 5
3 | 10
6 | | 2422 291217.8 961671
2423 291228.1 961671 | 6.1 4
5.5 4 | 1.5
1 2 | | .5
.5 | 18
12 | 3 Important Habitat 2 Important Habitat | 8 7.84
8 3.16 | 4 | -0.38 1
-0.02 1 | 32
32 | 5
5 | 15
10 | | 2424 291238.3 961671
2425 291248.1 961671 | 5.9 4 | 0.4 1 | R | .5 | 6 | 2 Important Habitat
2 Important Habitat | 8 2.85
8 3.08 | 4 | -0.03 1
-0.01 1 | 32
32 | 5 | 10 | | 2426 291258.1 961671 | 5.3 4 | 0.1 1 | | | 4 | 1 Important Habitat | 8 3.19 | 4 | 0.03 | 32 | 5 | 5 | | 2427 291247.6 961661
2428 291238.0 961661 | 6.0 4
6.2 4 | 0.2
0.4
1 | G | .5
1 | 4 | 2 Important Habitat
1 Important Habitat | 8 3.42
8 3.29 | 4 | 0.36 1
-0.34 1 | 32
32 | 5 | 10
5 | | 2429 291228.4 961661
2430
291217.8 961661 | 5.1 4
2.2 2 | 0.8 2
1.3 3 | G | 1 | 6 | 2 Important Habitat
2 Important Habitat | 8 2.85
8 3.42 | 4 | -0.08 1
0.00 1 | 32
32 | 5
5 | 10
10 | | 2431 291207.7 961651
2432 291218.0 961650 | 2.4
2.5
2 | 1.3
1.1 3 | G
R | 1
.5 | 6
9 | 2 Important Habitat
2 Important Habitat | 8 7.86
8 3.23 | 4 | -0.15 1
-0.12 1 | 32
32 | 5
5 | 10
10 | | 2433 291228.5 961651
2434 291237.9 961651 | 6.3
6.3
4 | 0.1
0.5
1 | | 1
.5 | 4
6 | 1 Important Habitat 2 Important Habitat | 8 2.79
8 3.10 | 4 | -0.06 1
-0.11 1 | 32
32 | 5
5 | 5
10 | | 2435 291247.9 961650
2436 291238.4 961641 | 6.5
6.6
4 | 0.4
0.5 | | .5
1 | 6 | 2 Important Habitat 1 Important Habitat | 8 3.16
8 2.87 | 4 | -0.35 1
-0.06 1 | 32
32 | 5
5 | 10
5 | | 2437 291228.2 961641
2438 291218.0 961641 | 6.9 4 | 0.2
1.5
3 | G | 1.5 | 4 | 1 Important Habitat 2 Important Habitat | 8 3.24
8 3.33 | 4 | -0.08 1
-0.24 1 | 32
32 | 5 | 5
10 | | 2439 291209.7 961640
2440 291208.1 961631 | 2.6 2 | 1.1 3 | G | 1 | 6 | 2 Important Habitat
2 Important Habitat
2 Important Habitat | 8 2.16
8 3.23 | 4 | -0.07 1
-0.02 1 | 32
32
32 | 5 | 10
10
10 | | 2441 291218.3 961631 | 3.4
5.9 4 | 0.3 | G | 1 | 4 | 1 Important Habitat | 8 2.98 | 4 | -0.03 1 | 32 | 5 | 5 | | 2442 291228.4 961631
2443 291238.1 961631 | 6.9 4
7.3 4 | 0.6
0.3
1 | | .5
.5 | 6 | 2 Important Habitat 2 Important Habitat | 8 3.02
8 3.27 | 4 | -0.34 1
-0.07 1 | 32
32 | 5
5 | 10
10 | | 2444 291238.0 961621
2445 291228.2 961621 | 7.2 4
6.9 4 | 0.6
0.4
1 | | 1
.5 | 8 | 2 Important Habitat 2 Important Habitat | 8 3.06
8 2.89 | 4 | -0.11 1
-0.24 1 | 32
32 | 5
5 | 10
10 | | 2446 291217.9 961621
2447 291208.4 961620 | 4.7 4
5.4 4 | 0.5
0.9
2 | | .5
.5 | 6
12 | 2 Important Habitat
2 Important Habitat | 8 3.39
8 2.66 | 4 | -0.04 1
-0.30 1 | 32
32 | 5
5 | 10
10 | | 2448 291208.0 961611
2449 291218.1 961611 | 3.5
2
3.3
2 | 0.8
0.5
1 | R | .5
.5 | 6 | 2 Important Habitat
1 Important Habitat | 8 3.09
8 3.21 | 4 | -0.07 1
-0.06 1 | 32
32 | 5 | 10 | | 2450 291228.2 961611
2451 291227.9 961601 | 8.4 6 | 0.4 1 | R | .5 | 9 | 2 Important Habitat | 8 3.20 | 4 | -0.28 1
-0.35 1 | 32 | 5 | 10 | | 2452 291217.6 961601 | 9.5
3.2
2 | 0.6 2 | G | .5
1 | 4 | 2 Important Habitat
1 Important Habitat | 8 3.26
8 3.22 | 4 | 0.16 1 | 32
32 | 5 | 10
5 | | 2453 291208.0 961601
2454 291240.1 961772 | 3.1
5.1 4 | 0.4 1 | | .5
1 | 4 | 2 Important Habitat
1 Important Habitat | 8 3.27
8 1.46 | 4 | -0.07 1
0.06 1 | 32
32 | 5
5 | 10
5 | | 2455 291239.3 961782
2456 291239.1 961802 | 2.7 2
2.2 2 | 0.5
0.01 1 | G | 1 | 2 2 | 1 Important Habitat Important Habitat | 8 1.78
8 1.72 | 4 | -0.04 1
-0.05 1 | 32
32 | 5
5 | 5 | | 2457 291239.2 961812
2458 291239.4 961821 | 2.1
2.2
2 | 2.6 3 3 | | .5
.5 | 9 | 2 Important Habitat 2 Important Habitat | 8 1.26
8 1.88 | 4 | -0.04 1
-0.05 1 | 32
32 | 5
5 | 10
10 | | 2459 291229.4 961822
2460 291229.8 961831 | 3.1
2
3.5
2 | 2.3
1.5
3 | | .5
1 | 9 | 2 Important Habitat
2 Important Habitat | 8 1.74
8 1.90 | 4 | -0.06 1
-0.07 1 | 32
32 | 5
5 | 10
10 | | 2461 291239.5 961832
2462 291239.6 961842 | 4.6
5.9
4 | 0.9
0.5 | G | 1
.5 | 8 | 2 Important Habitat
2 Important Habitat | 8 1.61
8 0.97 | 4 | -0.13 1
-0.09 1 | 32
32 | 5 | 10
10 | | 2463 291230.2 961841
2464 291230.2 961851 | 4.1 4 4 | 0.4 | G | 1 | 4 | 1 Important Habitat 2 Important Habitat | 8 1.67
8 1.66 | 4 | -0.06 1
-0.06 1 | 32 | 5 | 5 | | 2465 291239.9 961852
2466 291250.1 961852 | 6.0 4 | 0.4 1 | R | .5 | 6 | 2 Important Habitat | 8 1.39 | 4 | -0.08 1 | 32 | 5 | 10 | | 2467 291270.6 961852 | 4.2
3.4
2 | 0.5 1
1 2 | G | 1 | 4 | 1 Important Habitat 1 Important Habitat | 8 1.33
8 0.74 | 4 | -0.03 1
-0.04 1 | 32
32 | 5 | 5 | | 2468 291279.7 961852
2469 291290.0 961852 | 3.3
3.0
2 | 1.3
1.5 3 | | 1 | 6 | 2 Important Habitat 2 Important Habitat | 8 1.10
8 1.45 | 4 | -0.06 1
-0.08 1 | 32
32 | 5
5 | 10
10 | | 2470 291289.4 961861
2471 291269.5 961861 | 3.7 2
2.6 2 | 2.2 3 3 | | 1
.5 | 6
9 | 2 Important Habitat 2 Important Habitat | 8 2.07
8 1.81 | 4 | -0.12 1
-0.07 1 | 32
32 | 5
5 | 10
10 | | 2472 291260.1 961861
2473 291250.0 961862 | 2.8
3.2
2 | 1.9 3
1.4 3 | | .5
.5 | 9 | 2 Important Habitat 2 Important Habitat | 8 1.78
8 1.40 | 4 | -0.02 1
-0.02 1 | 32
32 | 5
5 | 10
10 | | 2474 291239.7 961861
2475 291230.2 961861 | 5.5 4
4.5 4 | 0.7
0.5
1 | | .5
.5 | 12
6 | 2 Important Habitat
2 Important Habitat | 8 1.76
8 1.88 | 4 | -0.11 1
-0.07 1 | 32
32 | 5 | 10
10 | | 2476 291229.9 961872
2477 291239.6 961872 | 4.6
4.1
4 | 1.2
1.9
3 | G | 1 | 12
12 | 2 Important Habitat
2 Important Habitat | 8 1.05
8 0.97 | 4 | -0.06 1
-0.05 1 | 32
32 | 5 | 10
10 | | 2477 251235.0 501872
2478 291249.9 961872
2479 291260.4 961871 | 2.9 2 | 2 3 | R | .5
.5 | 9 | 2 Important Habitat
2 Important Habitat
2 Important Habitat | 8 1.15
8 2.24 | 4 | -0.03 1
-0.01 1 | 32
32
32 | 5 | 10
10
10 | | 2480 291269.8 961872
2481 291280.1 961872 | 2.9 2 | 1.7 3
1.6 3
1.2 3 | | 1 | 6 | 2 Important Habitat | 8 1.26
8 1.31 | 4 | -0.03 1
-0.03 1 | 32
32
32 | 5 | 10 | | 2482 291289.8 961872 | 3.3 2 | 0.9 2 | | .5 | 6 | 2 Important Habitat
2 Important Habitat | 8 1.57 | 4 | -0.09 1 | 32 | 5 | 10
10 | | 2483 291289.8 961882
2484 291269.5 961882 | 2.6
2.9
2 | 0.2
1.9 3 | | 1
.5 | 9 | 1 Important Habitat 2 Important Habitat | 8 5.84
8 1.39 | 4 | 0.26 1
-0.05 1 | 32
32 | 5 | 5
10 | | 2485 291260.0 961882
2486 291249.6 961881 | 2.9
2.9
2 | 1.2
2.1
3 | | .5 | 9 | 2 Important Habitat
2 Important Habitat | 8 1.06
8 1.86 | 4 | -0.02 1
-0.05 1 | 32
32 | 5
5 | 10
10 | | 2487 291239.5 961882
2488 291229.2 961882 | 3.1 2
4.0 4 | 2.7
1.8 3 | R | .5
.5 | 18 | 2 Important Habitat 3 Important Habitat | 8 1.31
8 1.25 | 4 | -0.05 1
-0.10 1 | 32
32 | 5 | 10
15 | | 2489 291230.2 961892
2490 291239.6 961892 | 2.7
2.5
2 | 2.4
2.6 3 | R | .5
.5 | 9 | 2 Important Habitat
2 Important Habitat | 8 1.33
8 1.22 | 4 | -0.02 1
-0.02 1 | 32
32 | 5
5 | 10
10 | | 2491 291249.7 961892
2492 291260.1 961892 | 3.0 2
3.6 2 | 2.3
2.7
3 | | .5
.5 | 9 | 2 Important Habitat 2 Important Habitat | 8 1.27
8 4.14 | 4 | 0.02 1
-0.11 1 | 32
32 | 5
5 | 10
10 | | 2493 291269.7 961892
2494 291280.3 961892 | 3.7
2
3.7
2 | 2.8
1.6 3 | R | .5
1 | 9 | 2 Important Habitat
2 Important Habitat | 8 6.18
8 10.07 | 4
3 | 0.08 1
0.13 1 | 32
24 | 5
3 | 10
6 | | 2495 291289.6 961892
2496 291629.7 961742 | 3.8
7.0
4 | 0.2
0.8
1 | G | 1.5 | 2
12 | 1 Important Habitat 2 Wind Turbine | 8 14.45
6 74.07 | 3 | 0.11 1
5.76 1 | 24
18 | 3
3 | 3 6 | | 2497 291619.8 961742
2498 291609.7 961742 | 7.7 4 | 0.4
0.2
1 | R | .5
.5 | 6 | 2 Wind Turbine 2 Wind Turbine | 6 71.27
6 70.85 | 3 | 4.55 1
3.07 1 | 18
18 | 3 | 6 | | 2499 291599.5 961742
2500 291599.7 961732 | 8.2
8.6
6 | 0.3 1
0.4 1 | G | 1 | 6 | 2 Wind Turbine
2 Wind Turbine | 6 71.69
6 61.88 | 3 | 1.54 1
1.11 1 | 18
18 | 3 | 6 | | 2501 291589.6 961732 | 7.6 4 | 0.5 | G | 1 | 4 | 1 Wind Turbine | 6 64.24 | 3 | -0.20 1 | 18 | 3 | 3 | | 2502 291579.6 961732
2503 291559.7 961722 | 7.5 4
4.4 4 | 0.6 2
0.6 2 | R | .5
.5 | 12
12 | 2 Wind Turbine 2 Important Habitat | 6 68.09
8 55.70 | 3 | -1.43 1
6.04 1 | 18
24 | 3 | 6 | | 2504 291569.7 961722
2505 291579.9 961722 | 5.0 4
6.1 4 | 0.5 1
0.5 1 | G | .5
1 | 6
4 | 2 Important Habitat 1 Wind Turbine | 8 62.36
6 58.85 | 3
3 | 6.78 1
-1.83 1 | 24
18 | 3 3 | 3 | | 2506 291590.0 961722
2507 291599.8 961722 | 7.5 4
8.9 6 | 0.3 1
0.4 1 | | .5
1 | 6 | 2 Wind Turbine
2 Wind Turbine | 6 54.47
6 51.59 | 3
3 | -0.66 1
0.70 1 | 18
18 | 3
3 | 6 | | 2508 291610.1 961722
2509 291619.8 961722 | 9.1 6
8.9 6 | 0.2
0.8
2 | G
R | 1
.5 | 6
18 | 2 Wind Turbine
3 Wind Turbine | 6 50.62
6 51.85 | 3
3 | 2.30 1
3.80 1 | 18
18 | 3
3 | 6
9 | | 2510 291619.9 961732
2511 291629.9 961732 | 8.4
7.0 4 | 0.8 2
0.3 1 | R | .5
1 | 18 | 3 Wind Turbine 1 Wind Turbine | 6 61.54
6 63.99 | 3 | 4.21 1
5.50 1 | 18
18 | 3
3 | 9 | | 2512 291638.3 961722
2513 291639.5 961711 | 5.2
2.4
2.4 | 1.3 3 | R | .5 | 18 | 3 Wind Turbine 1 Wind Turbine | 6 58.11
6 49.76 | 3 | 5.99 1
5.86 1 | 18
18 | 3 | 9 | | 2514 291639.8 961701 | 5.4 4 | 0.1 1 | G | 1 | 4 | 1 Wind Turbine | 6 42.60 | 3 | 5.21 1 | 18 | 3 | 3 | | 2515 291639.9 961692
2516 291650.0 961692 | 3.2
3.1
2 | 0.3 1
1.2 3 | G | 1 | 6 | 1 Wind Turbine 2 Wind Turbine | 6 36.44
6 45.21 | 3 | 4.78 1
5.32 1 | 18
18 | 3 | 6 | | 2517 291650.2 961682
2518 291649.2 961672 | 3.0
3.9
2 | 1.2
1 2 | R | .5
.5 | 6 | 2 Wind Turbine
2 Wind Turbine | 6 41.64
6 39.21 | 3
3 | 5.13 1
4.91 1 | 18
18 | 3
3 | 6 | | 2519 291659.4 961664
2520 291650.1 961662 | 4.1 4
6.4 4 | 1.1 3
0.5 1 | R | .5
.5 | 18
6 | 3 Important Habitat
2 Important Habitat | 8 30.84
8 39.94 | 3
3 | -1.34 1
4.68 1 | 24
24 | 3
3 | 9 | | 2521 291639.9 961662
2522 291630.1 961652 | 8.2
8.8 6 | 0.5
0.2
1 | | 1 | 6 | 2 Wind Turbine
2 Wind Turbine | 6 31.33
6 27.84 | 3
3 | 3.61 1
1.97 1 | 18
18 | 3
3 | 6 | | 2523 291629.8
961663
2524 291629.3 961672 | 8.9
6
8.8 | 0.6 2
0.2 1 | G | 1 | 12
9 | 2 Wind Turbine
2 Wind Turbine | 6 21.31
6 19.33 | 3 | 2.07 1
2.72 1 | 18
18 | 3 | 6 | | 2525 291639.7 961672
2526 291640.3 961682 | 7.5 4
4.2 4 | 0.6 2
0.3 1 | R | .5
1 | 12
4 | 2 Wind Turbine
1 Wind Turbine | 6 29.72
6 32.28 | 3 | 4.09 1
4.61 1 | 18
18 | 3 3 | 6 | | 2527 291629.2 961682
2528 291619.6 961661 | 8.2
9.0
6 | 0.3
0.3
1
0.5 | G | 1 | 6 | 2 Wind Turbine
2 Wind Turbine
2 Wind Turbine | 6 22.04
6 13.52 | 3 | 3.55 1
0.61 1 | 18
18 | 3 | 6 | | 2529 291620.0 961651 | 10.1 6 | 0.3 | | .5 | 9 | 2 Wind Turbine | 6 22.06 | 3 | 0.24 1 | 18 | 3 | 6 | | | | | | | | | | | | | | | | 2520 201610 2 20161 | 7.0 | , | 0.3 | le le | 1.5 | | | Wind Turbir - | | 10.60 | 120 | 1 | | - | |--|----------------------|-------------|-----------------------------|-------------|-------------------|--------------|--------|---|-------------|-----------------------------------|-------------------------|----------------------|--------|-------------| | 2530 291610.2 961651
2531 291599.6 961652
2532 291589.6 961652 | 7.8
6.7
6.8 | 4
4
4 | 0.3
0.5
1 | R
G
G | 1.5
1
1 | 6
4
4 | 1
1 | Wind Turbine
Wind Turbine
Wind Turbine | 6 | 19.60 3
21.91 3
27.97 3 | -1.38
-2.50
-3.57 | 1 18
1 18
1 18 | 3 3 3 | 3 3 | | 2533 291590.0 961641
2534 291600.0 961642 | 6.6
6.4 | 4 | 0.5
0.5
1 | R
R | 1.5
1.5 | 6 | 2 2 | Important Habitat
Important Habitat | 8 8 | 25.36 3
30.22 3 | 1.37
1.58 | 1 24 1 24 | 3 3 | 6 | | 2535 291600.0 961662
2536 291609.8 961661 | 7.1
8.6 | 4
6 | 0.3
0.3
1 | R
G | 1.5
1 | 6
6 | 2
2 | Wind Turbine
Wind Turbine | 6 | 13.70 3
9.65 4 | -1.91
-0.77 | 1 18
1 24 | 3 3 | 6 | | 2537 291590.0 961662
2538 291580.0 961671 | 6.9
7.1 | 4
4 | 0.2
0.2
1 | G
R | 1
1.5 | 4
6 | 1
2 | Wind Turbine
Wind Turbine | 6
6 | 22.15 3
30.06 3 | -3.00
-3.54 | 1 18
1 18 | 3
3 | 3
6 | | 2539 291579.8 961682
2540 291589.6 961682 | 7.2
7.4 | 4
4 | 0.2
0.6
2 | G
G | 1 | 4
8 | 1
2 | Wind Turbine
Wind Turbine | 6
6 | 32.06 3
23.34 3 | -3.02
-1.89 | 1 18
1 18 | 3 3 | 3
6 | | 2541 291600.1 961682
2542 291609.8 961682 | 9.0
9.3 | 6 | 0.3 1
0.3 1 | R
R | 1.5
1.5 | 9 | 2 2 | Wind Turbine
Wind Turbine | 6 | 14.72 3
11.14 3 | -0.59
0.83 | 1 18
1 18 | 3 | 6 | | 2543 291619.1 961682
2544 291619.6 961691
2545 291619.4 961702 | 9.2
11.4
10.3 | 6 | 0.5
0.3
1 | G
G | 1 1 | 6 | 2 2 | Wind Turbine
Wind Turbine
Wind Turbine | 6 | 14.35 3
22.56 3
32.32 3 | 2.17
3.19
4.48 | 1 18
1 18
1 18 | 3 | 6 | | 2546 291620.0 961712
2547 291609.9 961712 | 10.1 | 6 | 0.7 2 | 6 | 1 | 12
6 | 2 2 | Wind Turbine
Wind Turbine
Wind Turbine | 6 | 42.19 3
40.68 3 | 3.58
2.00 | 1 18
1 18 | 3 | 6 | | 2548 291599.4 961712
2549 291589.9 961711 | 9.6
6.7 | 6 | 0.3
0.5
1 | R
R | 1.5
1.5 | 9 | 2 2 | Wind Turbine
Wind Turbine | 6 | 42.30 3
45.13 3 | 0.29
-1.07 | 1 18
1 18 | 3 | 6 | | 2550 291579.8 961712
2551 291568.6 961712 | 5.1
5.3 | 4
4 | 0.9
0.6
2 | R
R | 1.5
1.5 | 12
12 | 2
2 | Wind Turbine
Important Habitat | 6
8 | 50.58 3
54.58 3 | -1.99
6.18 | 1 18
1 24 | 3 | 6
6 | | 2552 291560.3 961712
2553 291570.0 961702 | 5.2
6.5 | 4
4 | 0.1
0.6
2 | G
G | 1 | 4
8 | 1
2 | Important Habitat
Important Habitat | 8 8 | 48.58 3
48.40 3 | 5.80
5.60 | 1 24
1 24 | 3 3 | 3
6 | | 2554 291570.4 961692
2555 291579.7 961692
2556 291579.7 961702 | 6.9
7.0 | 4 | 0.3
0.5
1 | R
R | 1.5
1.5 | 6 | 2 2 | Important Habitat
Wind Turbine
Wind Turbine | 6 | 42.49 3
36.73 3
43.19 3 | 5.15
-2.54
-2.16 | 1 24
1 18
1 18 | 3 | 6 | | 2557 291590.0 961702
2558 291589.9 961692 | 7.4
8.2 | 4 | 0.5 1
0.5 1 | R
R | 1.5
1.5 | 6 | 2 2 | Wind Turbine Wind Turbine Wind Turbine | 6 | 36.70 3
28.83 3 | -2.16
-1.19
-1.33 | 1 18
1 18 | 3 | 6 | | 2559 291600.2 961692
2560 291599.9 961702 | 10.4
11.3 | 6 | 0.5
0.2
1 | G
G | 1 | 6 | 2 2 | Wind Turbine
Wind Turbine | 6 | 22.81 3
32.19 3 | 0.41
0.59 | 1 18
1 18 | 3 | 6 | | 2561 291609.4 961702
2562 291610.1 961692 | 10.9
11.4 | 6
6 | 0.3
0.2
1 | R
G | 1.5
1 | 9
6 | 2 2 | Wind Turbine
Wind Turbine | 6
6 | 30.75 3
21.08 3 | 2.51
1.92 | 1 18
1 18 | 3
3 | 6
6 | | 2563 291649.6 962597
2564 291630.7 962643 | 2.2
4.7 | 4 | 4.1 8
2 3 | R
R | 1.5
1.5 | 24
18 | 3 | Important Habitat
Important Habitat | 8 | 1.12 4
0.63 4 | -0.02
0.05 | 1 32
1 32 | 5 | 15
15 | | 2565 291620.4 962692
2566 291592.3 962687
2567 291601.4 962733 | 6.5
5.1 | 4 | 2.5 | R | 1
1.5
1.5 | 8
18 | 3 | Important Habitat
Important Habitat
Important Habitat | 8 8 | 37.46 3
31.62 3
75.10 3 | 0.01
-2.88
-1.40 | 1 24 1 24 | 3 | 9 | | 2567 291601.4 962733
2568 292189.4 962701
2569 292199.9 962702 | 2.6 | 2 | 0.5
1.1
3 | R
R | 1.5
1.5 | 9 | 2 2 | Important Habitat
Important Habitat
Important Habitat | 8
8
8 | 75.10 3
51.94 3
51.56 3 | 2.27
2.26 | 1 24
1 24
1 24 | 3 3 | 6 | | 2570 292220.0 962702
2571 292229.9 962701 | 3.3
3.7 | 2 2 | 0.9
0.5
1 | R
G | 1.5
1 | 6 2 | 2 | Important Habitat
Important Habitat | 8 8 | 51.33 3
51.60 3 | 2.31
2.40 | 1 24 | 3 3 | 6 | | 2572 292239.8 962702
2573 292249.8 962701 | 4.0
4.4 | 4
4 | 0.4
0.5
1 | G
G | 1 1 | 4
4 | 1
1 | Important Habitat
Important Habitat | 8
8 | 51.49 3
51.76 3 | 2.47
2.60 | 1 24
1 24 | 3 3 | 3
3 | | 2574 292259.8 962702
2575 292260.7 962692 | 4.8
4.7 | 4 | 0.5
0.3
1 | R | 1.5
1.5 | 6
6 | 2 2 | Important Habitat
Wind Turbine | 8
6 | 52.29 3
54.00 3 | 2.66
-3.31 | 1 24
1 18 | 3 | 6
6 | | 2576 292261.3 962682
2577 292261.9 962671 | 4.5
4.4 | 4 | 0.2
0.7
2 | G
G | 1 | 4
8 | 1 2 | Wind Turbine Wind Turbine | 6 | 45.37 3
36.82 3 | -2.48
-1.65 | 1 18
1 18 | 3 3 | 6 | | 2578 292262.7 962665
2579 292249.8 962672
2580 292249.9 962681 | 3.8
4.4 | 4 | 1
0.2
1
0.2
1 | G G | 1.5
1 | 4 | 1 1 | Wind Turbine
Wind Turbine
Wind Turbine | 6 | 32.86 3
30.94 3
40.21 3 | -1.18
-1.95
-2.68 | 1 18
1 18
1 18 | 3 3 2 | 6
3
3 | | 2580 292249.9 962681
2581 292249.8 962692
2582 292239.9 962692 | 4.4
4.4
4.3 | 4 | 0.7
0.6
2 | G
R | 1
1
1.5 | 8
12 | 2 2 | Wind Turbine
Wind Turbine
Wind Turbine | 6 | 40.21 3
49.99 3
48.91 3 | -2.68
-3.45
-3.54 | 1 18
1 18
1 18 | 3 3 | 6 | | 2583 292229.7 962692
2584 292219.8 962692 | 4.3
4.3 | 4 | 0.4 1
0.9 2 | G
R | 1
1.5 | 4
12 | 1 2 | Wind Turbine
Wind Turbine | 6 | 49.35 3
51.99 3 | -3.58
-3.62 | 1 18
1 18 | 3 3 | 3
6 | | 2585 292209.9 962692
2586 292200.1 962692 | 4.3
4.2 | 4 | 1
1.2 2 | G
R | 1
1.5 | 8
18 | 2 3 | Wind Turbine
Important Habitat | 6
8 | 56.27 3
61.33 3 | -3.68
2.87 | 1 18
1 24 | 3 | 6
9 | | 2587 292189.9 962692
2588 292190.0 962682 | 4.0
4.3 | 4 | 1.1
0.8
2 | G
G | 1 | 12
8 | 2 2 | Important Habitat
Wind Turbine | 8
6 | 61.63 3
61.62 3 | 2.82
-3.01 | 1 24
1 18 | 3 3 | 6 | | 2589 292200.2 962682
2590 292209.8 962682
2591 292220.0 962682 | 4.3 | 4 | 1.3
1.2
3
0.8
2 | R
R | 1.5
1.5 | 18
18 | 3 | Wind Turbine
Wind Turbine
Wind Turbine | 6 | 54.01 3
47.76 3
42.96 3 | -2.96
-2.91
-2.89 | 1 18
1 18
1 18 | 3 | 9 | | 2592 292229.9 962682
2593 292240.1 962682 | 4.3
4.3
4.3 | 4 | 0.8
0.7
2
0.3 | e
G | 1.5
1 | 12
4 | 2 | Wind Turbine Wind Turbine Wind Turbine | 6 | 39.45
39.04
3 | -2.89
-2.82
-2.80 | 1 18
1 18 | 3 | 6 | | 2594 292239.8 962672
2595 292229.6 962672 | 4.3
4.3 | 4 | 0.2
0.2
1 | R
G | 1.5
1 | 6 4 | 2 | Wind Turbine
Wind Turbine | 6 | 28.86 3
29.94 3 | -2.03
-2.08 | 1 18
1 18 | 3 | 6 | | 2596 292209.8 962672
2597 292199.7 962672 | 4.3
4.3 | 4
4 | 0.2
1.4 3 | R
R | 1.5
1.5 | 6
18 | 2
3 | Wind Turbine
Wind Turbine | 6
6 | 40.18 3
47.92 3 | -2.16
-2.22 | 1 18
1 18 | 3
3 | 6
9 | | 2598 292190.0 962672
2599 292043.9 962849 | 4.3
3.2 | 2 | 1.3
0.5
1 | R
G | 1.5 | 18
2 | 3
1 | Wind Turbine
Wind Turbine | 6 | 55.87 3
70.61 3 | -2.25
0.67 | 1 18
1 18 | 3 3 | 3 | | 2600 292058.9 962871
2601 292020.1 962832
2602 291869.8 962927 | 3.5
2.1 | 2 2 | 0.5
0.1
1 | R
R | 1.5
1.5
1.5 | 3 | 1 1 2 | Wind Turbine
Wind Turbine
Wind Turbine | 6 | 71.40 3
71.40 3
126.66 3 | -0.82
1.92
-0.64 | 1 18
1 18
1 18 | 3 | 3 3 | | 2602 291869.8 962927
2603 291749.4 962931
2604 291679.4 962948 | 2.6 | 2 | 1.4 3 | R
R | 1.5
1.5
1.5 | 9 | 2 | Important Habitat
Important Habitat | 8 8 | 55.09 3
20.50 3 | -0.64
2.41
0.54 | 1 16
1 24
1 24 | 3 | 6 | | 2605 291627.1 962954
2606 291379.7 963123 | 2.9
10.4 | 2 | 1.2
0.5
1 | R
R | 1.5
1.5 | 9 | 2 2 | Important Habitat
Wind Turbine | 8 | 2.18 4
107.83 3 | 0.10
-3.72 | 1 32
1 18 | 5 | 10
6 | | 2607 291321.5 963151
2608 291248.4 963156 | 10.2
9.5 | 6
6 | 0.3
0.3
1 | G
G | 1 1 | 6
6 | 2
2 | Wind Turbine
Important Habitat | 6
8 | 117.09 3
56.06 3 | -10.14
6.34 | 1 18
1 24 | 3 | 6
6 | | 2609 291229.7 963132
2610 291203.9 963205 | 7.3
5.6 | 4
| 0.3 1
0.4 1 | G
R | 1
1.5 | 6 | 1
2 | Important Habitat
Important Habitat | 8 | 32.58 3
23.71 3 | 3.06
1.76 | 1 24
1 24 | 3 | 6 | | 2611 291180.5 963180
2612 291161.6 963161
2613 291115.4 963201 | 3.4
3.3 | 2 | 0.8
0.7
2 | R
R | 1.5
1.5 | 6 | 2 2 | Important Habitat
Important Habitat
Important Habitat | 8 8 | 1.57 4
2.13 4
2.91 4 | 0.05
0.05
0.21 | 1 32
1 32
1 32 | 5 | 10 | | 2614 291131.5 963220
2615 291151.5 963242 | 4.4
1.3 | 4 | 0.4
1
2.3
3 | G
R | 1
1.5 | 4
4.5 | i
i | Minor Watercourse
Important Habitat | 6 | 2.96 4
1.98 4 | -0.05
0.00 | 1 24
1 32 | 3 5 | 3 5 | | 2616 291030.7 963431
2617 291018.7 963431 | 3.3
1.8 | 2
1 | 1 2
0.8 2 | R
R | 1.5
1.5 | 6 | 2
1 | Important Habitat
Important Habitat | 8 | 65.57 3
62.73 3 | 2.86
2.67 | 1 24
1 24 | 3 3 | 6 | | 2618 291010.0 963432
2619 290999.8 963432 | 1.8
1.3 | 1
1 | 1.1
0.8 2 | G
G | 1 1 | 3
2 | 1
1 | Important Habitat
Important Habitat | 8
8 | 61.39 3
61.23 3 | 2.51
2.47 | 1 24
1 24 | 3
3 | 3 | | 2620 291000.4 963422
2621 291010.2 963422 | 2.0 | 1 2 | 0.6 2
0.6 2 | G
G | 1 | 2 4 | 1 | Important Habitat
Important Habitat | 8 | 71.31 3
71.24 3 | 2.38
2.67 | 1 24
1 24 | 3 | 3 | | 2622 291019.8 963422
2623 291030.1 963422
2624 291040.0 963422 | 3.6 | 2 | 0.5
0.6
2
0.5 | G | 1
1
1.5 | 4 | 1 | Important Habitat
Important Habitat
Important Habitat | 8 8 | 71.75 3
74.12 3
67.92 3 | 2.93
3.17
-1.09 | 1 24
1 24
1 24 | 3 | 3 3 | | 2625 291039.9 963412
2626 291029.9 963412 | 7.1
4.7 | 4 | 0.3
0.3
1
0.2 | R
R | 1.5
1.5 | 6 | 2 2 | Important Habitat
Important Habitat | 8 8 | 65.85 3
75.79 3 | -0.65
-1.69 | 1 24 1 24 | 3 | 6 | | 2627 291019.7 963412
2628 291010.0 963412 | 2.5
2.5 | 2 2 | 0.5
0.3
1 | G
G | 1 1 | 2 2 | 1
1 | Important Habitat
Important Habitat | 8
8 | 81.67 3
81.23 3 | 2.96
2.56 | 1 24
1 24 | 3
3 | 3
3 | | 2629 291000.2 963412
2630 290999.7 963402 | 2.1
3.1 | 2 | 1 2 2 | G
G | 1 | 4 | 1 | Important Habitat
Important Habitat | 8 | 81.48 3
91.07 3 | 2.26
2.03 | 1 24
1 24 | 3 | 3 | | 2631 291009.6 963402
2632 291020.5 963402
2633 291029.6 963402 | 4.5 | 4 | 0.5
0.5
1
0.6
2 | R
R | 1
1.5
1 | 6 | 2 | Important Habitat
Important Habitat
Important Habitat | 8 8 | 91.51 3
84.75 3
75.62 3 | 2.20
-2.27
-1.48 | 1 24
1 24
1 24 | 3 | 3
6 | | 2634 291039.8 963402
2635 291050.2 963401 | 8.0
8.0 | 4 | 0.2
0.4
1 | R
G | 1.5
1 | 6 4 | 2 | Important Habitat
Important Habitat | 8 8 | 65.43 3
55.05 3 | -0.21
1.24 | 1 24
1 24 | 3 3 | 6 | | 2636 291050.2 963392
2637 291050.2 963382 | 8.8
8.7 | 6
6 | 0.5
0.3
1 | G
R | 1
1.5 | 6
9 | 2
2 | Important Habitat
Important Habitat | 8
8 | 55.08 3
53.57 3 | 0.97
0.17 | 1 24
1 24 | 3 3 | 6
6 | | 2638 291049.4 963372
2639 291059.9 963371 | 7.9
7.8 | 4 | 0.3
0.1
1 | G
R | 1
1.5 | 4
6 | 1 2 | Important Habitat
Important Habitat | 8 8 | 51.59 3
41.13 3 | 0.05
1.54 | 1 24 1 24 | 3 | 3
6 | | 2640 291070.0 963372
2641 291070.0 963362
2642 291070.1 963352 | 4.0
4.8
3.1 | 4 4 2 | 0.2
0.2
1
0.1 | G | 1
1
1.5 | 4 4 3 | 1 | Important Habitat
Important Habitat
Important Habitat | 8
8
8 | 31.51 3
30.29 3
30.13 3 | 2.85
2.88
3.23 | 1 24
1 24
1 24 | 3 3 3 | 3
3
3 | | 2642 291070.1 963352
2643 291080.1 963352
2644 291069.9 963342 | 3.1
6.7
3.8 | 2
4
2 | 0.1
0.1
1
0.1 | R
G | 1.5
1.5
1 | 6 2 | 2 | Important Habitat
Important Habitat
Important Habitat | 8 8 | 30.13
20.18
30.31
3 | 3.23
2.69
3.13 | 1 24
1 24
1 24 | 3 3 | 3
6
3 | | 2645 291059.8 963341
2646 291060.2 963352 | 8.9
9.6 | 6
6 | 0.2
0.2
1 | G
R | 1
1.5 | 6
9 | 2 2 | Important Habitat
Important Habitat | 8 8 | 39.91 3
40.07 3 | 1.33
2.15 | 1 24
1 24 | 3 3 | 6
6 | | 2647 291059.9 963362
2648 291049.7 963361 | 7.8
10.2 | 4
6 | 0.1
0.1
1 | G
G | 1 | 4
6 | 1
2 | Important Habitat
Important Habitat | 8
8 | 40.39 3
50.53 3 | 1.72
0.14 | 1 24
1 24 | 3 | 3
6 | | 2649 291049.7 963352
2650 291050.0 963342
2651 291040.0 963342 | 11.5
12.0
11.2 | 6 | 0.2
0.7
0.5
1 | G | 1
1
1.5 | 6 12 | 2 2 | Important Habitat
Important Habitat
Important Habitat | 8 8 | 50.55 3
49.00 3
58.36 3 | 0.01
-0.61
-2.72 | 1 24
1 24
1 24 | 3 3 | 6 | | 2651 291040.0 963342
2652 291039.9 963352
2653 291039.5 963362 | 9.6
8.4 | 6 | 0.5
0.2
1
0.3 | R
G | 1.5
1
1.5 | 6 | 2 2 | Important Habitat
Important Habitat
Important Habitat | 8 8 | 58.36 3
60.33 3
60.77 3 | -2.72
-1.88
-1.56 | 1 24
1 24
1 24 | 3 | 6 | | 2654 291040.4 963372
2655 291039.6 963382 | 6.9
6.0 | 4 | 0.3
0.2
1 | R
G | 1.5
1.5 | 6 4 | 2 | Important Habitat
Important Habitat | 8 8 | 60.77
60.41
3
63.60
3 | -0.99
-1.25 | 1 24
1 24
1 24 | 3 3 | 6 | | 2656 291039.6 963392
2657 291029.6 963392 | 7.3
5.4 | 4 | 0.2
0.3
1
0.8
2 | G | 1 | 4 8 | 1 2 | Important Habitat
Important Habitat | 8 8 | 65.63 3
75.62 3 | -0.63
-1.61 | 1 24
1 24 | 3 3 | 3 6 | | 2658 291030.0 963382
2659 291030.1 963372 | 5.7
7.8 | 4 | 1
0.5
1 | G | 1
1 | 8
4 | 2
1 | Important Habitat
Important Habitat | 8 8 | 72.67 3
70.62 3 | -2.09
-2.31 | 1 24
1 24 | 3 3 | 6 3 | | 2660 291029.7 963361
2661 291029.9 963352 | 8.0
8.1 | 6 | 0.4 1
0.3 1 | G
R | 1 | 9 | 2 2 | Important Habitat
Important Habitat | 8 8 | 70.53 3
70.34 3 | -2.90
-3.33 | 1 24
1 24 | 3 3 | 6 | | 2662 291030.1 963342
2663 291020.0 963352
2664 291019.6 963362 | 8.6
8.1
8.1 | 6 | 0.5
0.4
1
0.3 | R | 1
1.5
1.5 | 9 | 2 2 | Important Habitat
Important Habitat
Important Habitat | 8 8 | 67.73 3
80.27 3
80.61 3 | -4.40
-4.70
-4.20 | 1 24
1 24
1 24 | 3 3 | 6 | | 2665 291019.5 963372
2666 291019.7 963382 | 8.0
6.8 | 6 | 0.8
0.8
0.7
2 | G | 1 1 | 9
12
8 | 2 2 | Important Habitat
Important Habitat
Important Habitat | 8 8 | 81.47 3
82.63 3 | -4.20
-3.74
-3.15 | 1 24
1 24
1 24 | 3 3 | 6 | | 2667 291019.1 963392
2668 291010.0 963392 | 5.4
5.5 | 4 | 1
1 2 | G
R | 1
1.5 | 8
12 | 2
2 | Important Habitat
Important Habitat | 8
8 | 86.13 3
94.70 3 | -2.54
-4.17 | 1 24
1 24 | 3 3 | 6
6 | | 2669 291010.0 963382
2670 291009.9 963372 | 7.8
8.1 | 4
6 | 0.5
0.8
2 | G
R | 1
1.5 | 4
18 | 1 3 | Important Habitat
Important Habitat | 8 8 | 92.18 3
90.82 3 | -4.41
-4.95 | 1 24 1 24 | 3 | 3
9 | | 2671 290459.0 962921
2672 290420.2 962911
2673 290415.0 962937 | 4.4
6.5 | 4 | 0.2
0.2
1 | R | 1.5
1.5
1.5 | 6 | 2 2 | Tracks or Paths
Tracks or Paths
Tracks or Paths | 2 2 | 18.30 3
20.01 3
43.59 3 | 0.04
-1.41
-1.61 | 1 6 | 1 1 | 2 2 2 | | 2673 290415.0 962937
2674 290410.3 962961
2675 290400.6 962991 | 4.6
5.5
4.6 | 4 4 | 0.5
0.3
1
0.3
1 | R
R | 1.5
1.5
1.5 | 6 | 2 2 | Tracks or Paths Tracks or Paths Tracks or Paths | 2 2 2 | 43.59 3
67.47 3
98.06 3 | -1.61
-1.51
1.61 | 1 6 1 | 1
1 | 2 2 | | 2676 290400.2 963012
2677 290419.1 963012 | 6.1
6.0 | 4 | 0.4
1.4 3 | R
G | 1.5
1 | 6
12 | 2
2 | Tracks or Paths
Tracks or Paths | 2 2 | 119.06 3
115.21 3 | 1.89
0.24 | 1 6
1 6 | 1
1 | 2 2 | | 2678 290439.3 963011 | 5.7 | 4 | 0.4 1 | | 1 | 4 | 1 | Tracks or Paths | 2 | 108.02 3 | -1.85 | 1 6 | 1 | 1 | | 2679 290448.3 963000
2680 200420.4 962092 | 6.1 4 | 02 1 G
03 1 R | 1 4 1
15 6 2 | Tracks or Paths 2 | 94.28 3 -
84.75 3 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | |--|--|---|-----------------|-------------------|----------------------|--| | 2679 290448.3 963000
2680 290430.4 962983
2681 290455.3 962969
2682 290440.0 962951
2683 290441.0 962932
2684 290460.6 962940 | 6.1 4
6.7 4
3.7 2
7.0 4
6.4 4
5.0 4 | 0.2 1 G R 0.3 1 G C C C C C C C C C C C C C C C C C C | 1 | | 94.28 3 | 1.27 1 6 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |