

Pell Frischmann

An Càrr Dubh Wind Farm

Outline Drainage Strategy

Technical Note

Outline Drainage Strategy Technical Note

Info

Introduction

Pell Frischmann have been commissioned by LUC (referred to as the "Client" throughout the document) to provide an outline Drainage Strategy for the proposed An Carr Dubh Wind Farm (referred to as the "Proposed Development" throughout the document), on behalf of Car Duibh Wind Farm Limited.

This report provides an outline surface water management strategy to mitigate any impact from surface water runoff attributed to the Proposed Development. The strategy is developed in accordance with sustainable drainage principles and allows the Site to mitigate flood risk during design storm events, whilst ensuring no increase of flood risk to offsite receptors and avoiding deterioration of the water environment.

The drainage strategy presented in this document has been developed to demonstrate measures that could be used across the Site to protect the existing hydrological regime. Examples of mitigation measures are provided throughout the report with detailed proposals for measures to be documented prior to construction. Measures will provide the same or greater protection for the water environment. The measures are designed to be proportionate to the risk and, where greater risk is highlighted at specific locations prior to construction, specific measures would be agreed for those locations.

The drainage strategy has been prepared in accordance with the advice and requirements prescribed in current best practice documents relating to management of flood risk in development, published by the Construction Industry Research and Information Association (CIRIA)¹, the British Standards Institution (BSI) BS8533² and Scottish Environment Protection Agency (SEPA) National Standing Advice on Development and Flood Risk³.

The Site is within the jurisdiction of Argyll and Bute Council (ABC).

To complete the Drainage Strategy, the following key stages of work have been undertaken:

- Collation of desk-based information and undertaking a review of publicly available information, including local data, policy and guidance.
- A desktop review of other data that has been made available such as topographical surveys/elevation information and Proposed Development layout options.
- Estimation of the required surface water attenuation storage and provision of outline Sustainable Urban Drainage Systems (SuDS) features arrangement.

Background and Site Context

Turbine 1 (T1) of the Proposed Development is the closest to Inveraray, located approximately 6km to the north-west, and T13 is the closest to Dalavich, approximately 4.5km to the east. The location of the Site is shown on Figure 1.

https://www.sepa.org.uk/media/535237/sepa-standing-advice-for-planning-authorities-and-developers-lups-gu8-v11-web.pdf

¹ CIRIA Drainage Guidance can be found here:

https://www.susdrain.org/resources/ciria-guidance.html

² Information on BSI 8533 can be found here:

https://knowledge.bsigroup.com/products/assessing-and-managing-flood-risk-in-development-code-of-practice/standard

³ SEPA National Standing Advice:

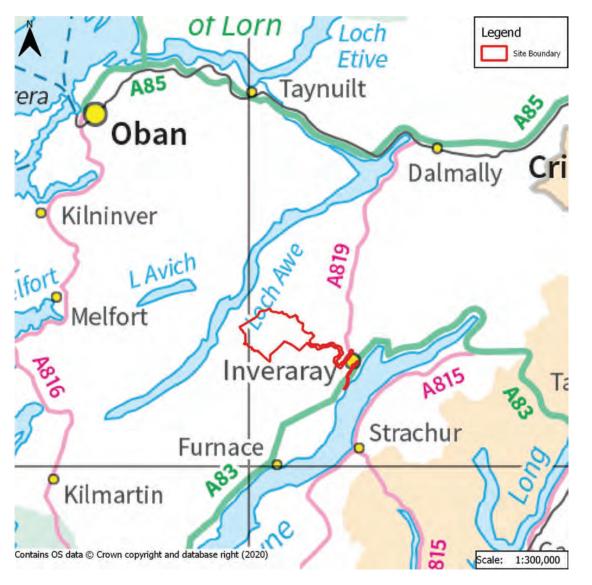


Figure 1 Site Location Plan

Proposed Development

The Proposed Development will comprise up to 13 wind turbines and associated infrastructure as described in detail in Chapter 4: Project Description of the EIA Report.

Local Watercourses

The main watercourse catchments within the proposed Site boundary are:

- Allt Blarghour (including the Eas an Amair subcatchment);
- Kames River;
- Allt a' Ghlinne
- Erallich Water (including the Alltan Airigh Mhic Choinnich and All an t-Sluichd subcatchments);
- Allth Bail' a' Ghobhainn;

Outline Drainage Strategy Technical Note

Info

- Allt Riabhachan;
- Quakers Burn; and
- Crom Allt.

There are a number of unnamed sub-catchments of these larger catchments located within the Site boundary, the channels of which are also crossed by the proposed onsite tracks. Figure 2 shows the extent of existing watercourses crossed by the infrastructure and a catchment map is provided as Figure 7.1 of the EIA Report.

Kaya Consulting (KC) have undertaken a hydrological analysis for each individual catchment at the watercourse crossing location, determining the design flows for 2-, 10-, 30-, 50- and 100-year return periods.

74 new watercourse crossings will be required over the identified tributaries as a result of the Proposed Development. The watercourse crossing location plan, showing proposed and existing crossing locations, is provided in Annex A.

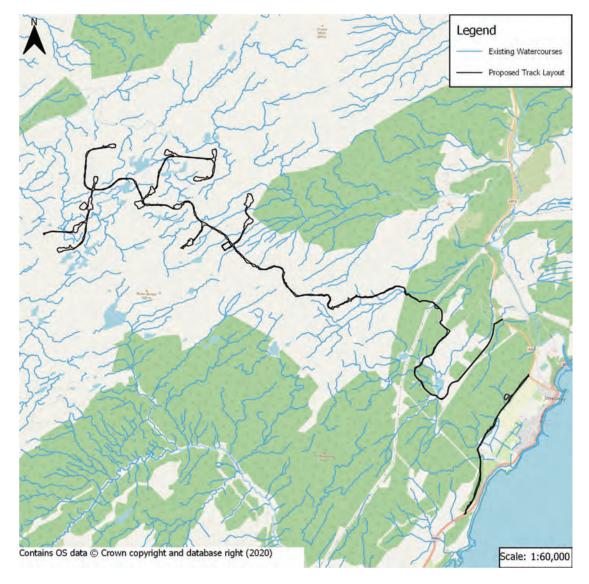


Figure 2 Existing Watercourses

Outline Drainage Strategy Technical Note

Info

Page 5

Topography

The highest elevation is within the centre of the Site, adjacent to Beinn Bhreac peak at 526m AOD (Above Ordnance Datum). Ground levels fall northwest and southeast from that location towards Loch Awe and Loch Fyne respectively. The lowest elevations are along proposed access track from the A819 road at approximately 78m AOD. The proposed tracks and wind turbine platforms at the western part of the Site are at approximately 330m AOD.

Trackside Drainage

The proposed trackside drainage layout for the Proposed Development is shown in Drawings SK01-SK03 (Annex C).

The ditches will be sized by the contractor at the detailed design stage to accommodate surface runoff from the track for the 1 in 30-year design storm event.

All permanent drainage should be installed concurrently with all adjacent infrastructure.

All drainage channels should be sufficiently wide as is practicable to allow wildlife to safely enter and exit the channel. The channel banks shall be at a minimum slope of 1 in 3.

Permanent check dams should be specified at the detailed design stage. They should be spaced at regular intervals within the drainage ditches. Check dams are required to reduce the velocity and slow down sediment transportation while also preventing channel scour.

Check dams are proposed to be constructed of clean aggregate graded 50mm-300mm and embedded into the side walls and invert of the excavation by at least 100mm. The number and location of check dams will be dependent on the slope gradient with a minimum spacing of 1 check dam per 75m length of ditch.

The spacing of relief drains crossing the access tracks should be determined at the detailed design stage. The spacing of relief drains should not exceed 200m as per best practice.

Watercourse Crossings

The proposed access track and wind farm infrastructure layout intersects a large number of existing watercourses (shown in Figure 2). To maintain hydrological continuity, a number of new watercourse crossings have been incorporated into the design.

KC has identified 105 watercourse crossings associated with the Proposed Development (31 existing crossings and 74 proposed new crossings).

Design Criteria

The watercourse crossing outline design is based on the following guidance:

- SEPA River Crossings Engineering in the water environment: good practice guide.4
- CIRIA The SuDS Manual C753.5

https://www.ciria.org/ItemDetail?iProductCode=C753&

Pell Frischmann

Outline Drainage Strategy Technical Note

Info

In addition, following consultation with ABC at the EIA Scoping stage (refer to Table 7.1 in Chapter 7 of the EIAR) it was agreed that watercourse crossings would be designed to maintain, and not reduce, the existing capacity of the channel. Crossings were to be sized using runoff calculations to inform dimensions.

Methodology

The location of the watercourse crossings is based KC's assessment (plan is shown in Annex A).

The ground elevations within the Site boundary are informed from OS Terrain 5 data, hence the cross-section and slope of the watercourses cannot be determined with confidence.

The method for sizing the watercourse crossings included:

- 1. Estimating the length of the hydraulic structure, based on satellite imagery, OS Terrain 5 data, hydrological characteristics and the extents of the proposed infrastructure.
- 2. Estimating the slope of the structure, based on upstream and downstream invert levels, informed from OS Terrain 5 data.
- 3. Sizing the structure based on the above parameters and the requirement to convey the 1 in 30-year return period flows, based on the Manning-Strickler equation and verified with Innovyze Microdrainage for all specified pipe culverts.

The method provides reasonable estimation, the exact slope, however should be assessed on site by the contractor.

Watercourse Crossing Outline Design

The full results, including the Innovyze Microdrainage output, for all watercourse crossings are provided in Annex B. The following is a summary of the watercourse crossing outline design:

- Watercourse crossings 8 and 9 are shown as located below the T10 foundation and its associated hardstanding. Furthermore, the hydraulic structures would require a length of over 60m. Positioning culverts underneath or in close proximity to the turbine foundation is not recommended as it may compromise bearing capacity and would present a maintenance and serviceability risk. It is recommended that the runoff is intercepted by a cut-off drain along the upslope perimeter of the hardstanding and is then conveyed to a linear drain at the downslope side of the proposed turbine location and discharging the runoff overland, maintaining the hydrological continuity. The proposed layout is shown on Drawing SK01.
- Watercourse crossings 34 and 35 are shown as located below the proposed turbine T01 foundation and its associated hardstanding. Furthermore, the hydraulic structures would require a length of over 60m.
 It is recommended that runoff is intercepted by a cut-off drain along the upslope side of the hardstanding and is conveyed by a culvert below the proposed track to the north.
- Watercourse crossings 74 106 are existing culverts. Their capacity was also assessed, and upsizing was recommended based on the outlined approach above.
- Watercourse crossings 2, 16, 22, 27, 29, 36, 72 and 85 are required to convey large flows that cannot be accommodated by pipe culverts. It is therefore recommended for the track to bridge over these watercourses, which would enable them to maintain existing capacity and have the least impact as per SEPA guidance. Current SEPA guidance advises that box culverts are only suitable for small streams in lowland rivers, therefore, not recommended for the highlighted crossings.

The proposed pipe culverts will have to incorporate concrete structural protection to account for the abnormal loadings and mitigate against structural failure. The concrete surround specification will be determined at the detailed design stage of the project.

Pell Frischmann Page 6

⁴ SEPA River Crossings Engineering in the Water Environment: Good Practice Guide can be found here: https://www.sepa.org.uk/media/151036/wat-sg-25.pdf

CIRIA The SuDS Manual C753 can be found here:

Outline Drainage Strategy Technical Note

Info

The design of the proposed bridge structures will be undertaken at the detailed design stage, as further survey will be required to confirm the necessary span and deck level.

The proposed culverts should be laid in natural ground or into the bed of the watercourse where applicable. All culvert sizes have been designed to maintain self-cleansing velocity during the design event (in in 30-year return period).

Flow Attenuation

Current best practice relating to sustainable surface water management is outlined in the SuDS Manual (CIRIA Report C753) which provides details on the use of SuDS for managing surface water runoff:

- Prevention the use of good site design and housekeeping measures on individual sites to prevent runoff and pollution (e.g. minimise areas of hard standing).
- Source Control control of runoff at or very near its source (such as the use of rainwater harvesting, permeable paving or green roofs).
- Site Control management of water from several sub-catchments (including routing water from roofs and car parks
 to one or several soakaways or attenuation ponds for the whole site).
- Regional Control management of runoff from several sites, typically in a retention pond or wetland.

It is generally accepted that implementation of SuDS, as opposed to conventional drainage systems, provides several benefits by:

- Reducing peak flows to watercourses or sewers and potentially reducing the risk of flooding downstream.
 Reducing the volumes and frequency of water flowing directly to watercourses or sewers by removing pollutants from diffuse pollutant sources.
- Improving water quality over conventional surface water sewers by removing pollutants from diffuse pollutant sources.
- Reducing potable water demand through rainwater harvesting.
- Improving amenity through the provision of public open spaces and providing biodiversity and wildlife habitat enhancements.
- Replicating natural drainage patterns, including the recharge of groundwater so that the baseflows are maintained.

The Surface Water Drainage Strategy for the Proposed Development will comprise the management of surface water runoff from the hardstanding and roof areas.

In accordance with CIRIA Report C753, the hierarchy for favoured disposal of surface water runoff from development sites is as follows:

- 1. Water reuse, where a demand is identified.
- 2. Infiltration to Ground, where ground conditions permit.
- 3. Discharge to Surface Waters.
- Discharge to Sewer.

Proposed Surface Drainage

The impermeable areas within the Proposed Development consist of the substation platform and the turbine hardstanding areas. They will consist of compacted gravel. The drainage design is based on a conservative assumption that they are 80% impermeable.

Pell Frischmann

Outline Drainage Strategy Technical Note

Info

Page 8

Greenfield runoff rates have been estimated through application of methodology outlined in IH124 as set out within the Interim Code of Practice for SuDS (ICPSuDS). The IH124 method can be used to estimate Greenfield runoff rates for a range of Annual Exceedance Probability (AEP) events, or return periods by applying regional growth curve factors to the mean annual peak runoff (i.e. QBAR). The UK hydrological region for the Site is Region 1 therefore the appropriate growth curve factors for this region have been incorporated into the analysis undertaken in the MicroDrainage software suite.

The hydrological characteristics for the catchment have been incorporated into the runoff modelling and results are presented below in Table 1 for a range of AEP storm events.

• Site Area: Substation Platform – 1.06ha; Turbine hardstanding – 0.22ha

Average Annual Rainfall (SAAR): 2000

Soil Index: 0.4

UK Hydrological Region: No.1

• Urban Extent: 0

Table 1 Estimation of Greenfield (pre-development) Rate of Runoff

AEP (%)	Return Period	Greenfield Runoff Rate (I/s/ha)
50	2	10.6
	<u>QBAR</u>	<u>11.6</u>
3.3	30	22
1	100	28.8
0.5	200	32.7
0.1	1000	42.2

The QBAR 'Unit Greenfield Runoff Rate' for the Site, and thus the limiting post development peak runoff rate for all storm events up to and including the design 0.5% AEP plus climate change, has been estimated to be 11.6l/s/ha.

Therefore, the Greenfield runoff rate for Site Compound, assuming 80% impermeability is **9.84l/s** for the substation platform and **1.86l/s** for a wind turbine hardstanding.

Proposed Attenuation and SuDS Features

Based on the attenuation calculations, undertaken in MicroDrainage (Annex D), a volume of 620m³ need to be attenuated for the substation platform for the 0.5% AEP + uplift for climate change. It is proposed that this is attenuated via a SuDS attenuation pond with the following parameters:

- 1.5m total depth
- 835m³ total volume
- 302mm freeboard allowance
- 1 in 3 side slope

Page 7

Outflow controlled via a Hydro-brake

For the turbine hardstanding areas, it is proposed that interception drains are placed at the downslope of the wind turbine platforms, intercepting and attenuating runoff. Discharge of surface water would be achieved by water spilling over a designed weir section along the crest of the drain with appropriate erosion protection. This attenuation method is considered most suitable for the rural upland area of the Site. The required attenuation volume per turbine hardstanding area for the 0.5% AEP + uplift for climate change is 75m³ and was calculated through Innovyze MicroDrainage (shown in Annex D).

It is recommended that emergency spillway IS designed within the detailed design stage for the proposed SuDS pond to accommodate for a storm event exceeding 0.5% AEP + climate change.

Pell Frischmann

Outline Drainage Strategy Technical Note

Info

The latest guidance on climate change impacts on peak rainfall intensities has been published by SEPA, with an updated approach based on regional estimates across river management catchments. The site falls within the Argyll Catchment, which suggests for the 2080s epoch the climate change allowance is 46%.

Summary & Recommendations

Summary of outline drainage strategy for the site:

- The Site contains 6.6km of access tracks. The proposed access tracks will be served by a network of surface water drainage ditches adjacent to the tracks. The trackside drainage will utilise relief drains crossing the access track longitudinally to ensure the drainage ditches do not surcharge.
- The proposed drains should utilise silt traps/catch pits at the inlet of all cross drains to prevent the pipes becoming blocked
- The proposed trackside drainage should be designed so that it allows wildlife to cross safely.
- Erosion protection should be utilised at all inlets and outlets
- 74 proposed watercourse crossings have been sized and specified on the basis of hydrological assessment undertaken by KC, OS terrain 5 data and the proposed infrastructure layout.
- 8 proposed watercourse crossing are bridges.
- 66 proposed watercourse crossings are conventional piped culverts.
- 4 proposed watercourse crossings are diverted through drainage ditches around the proposed wind turbine hardstandings.
- 31 existing watercourse crossings have been assessed for capacity, based on available information at the time of writing of this report.
- It is proposed that runoff from the proposed substation platform and the wind turbine hardstandings is attenuated by cut-off drains at the downslope side of the platforms. Runoff would then be discharged overland towards the downstream catchment.

Pell Frischmann

Page 9

Outline Drainage Strategy Technical Note

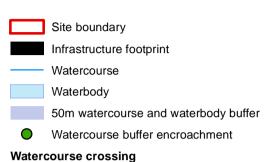
Info

This report is to be regarded as confidential to our Client and is intended for their use only and may not be assigned except in accordance with the contract. Consequently, and in accordance with current practice, any liability to any third party in respect of the whole or any part of its contents is hereby expressly excluded, except to the extent that the report has been assigned in accordance with the contract. Before the report or any part of it is reproduced or referred to in any document, circular or statement and before its contents or the contents of any part of it are disclosed orally to any third party, our written approval as to the form and context of such a publication or disclosure must be obtained.

Repoi	t Ref.	Document8				
File P	ath	Document8				
Rev	Suit	Description	Date	Originator	Checker	Approver
P01	S01	First Issue	24-Feb-23	K.Ivanov	R Lucey	S.McGarva
P02	S02	Site Compound Area Amendment	09-Mar-23	K. Ivanov	R. Lucey	S. McGarva
Ref. re	ference.	Rev revision. Suit suitability.				

Pell Frischmann Page 10

Outline Drainage Strategy Technical Note


Annexes

Annex A Initial Watercourse Crossing Location

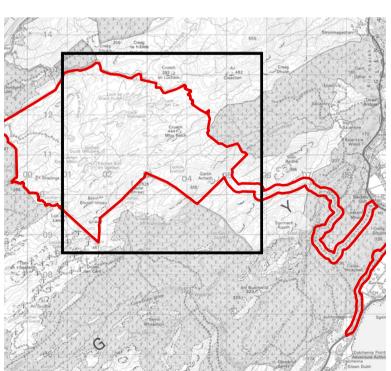
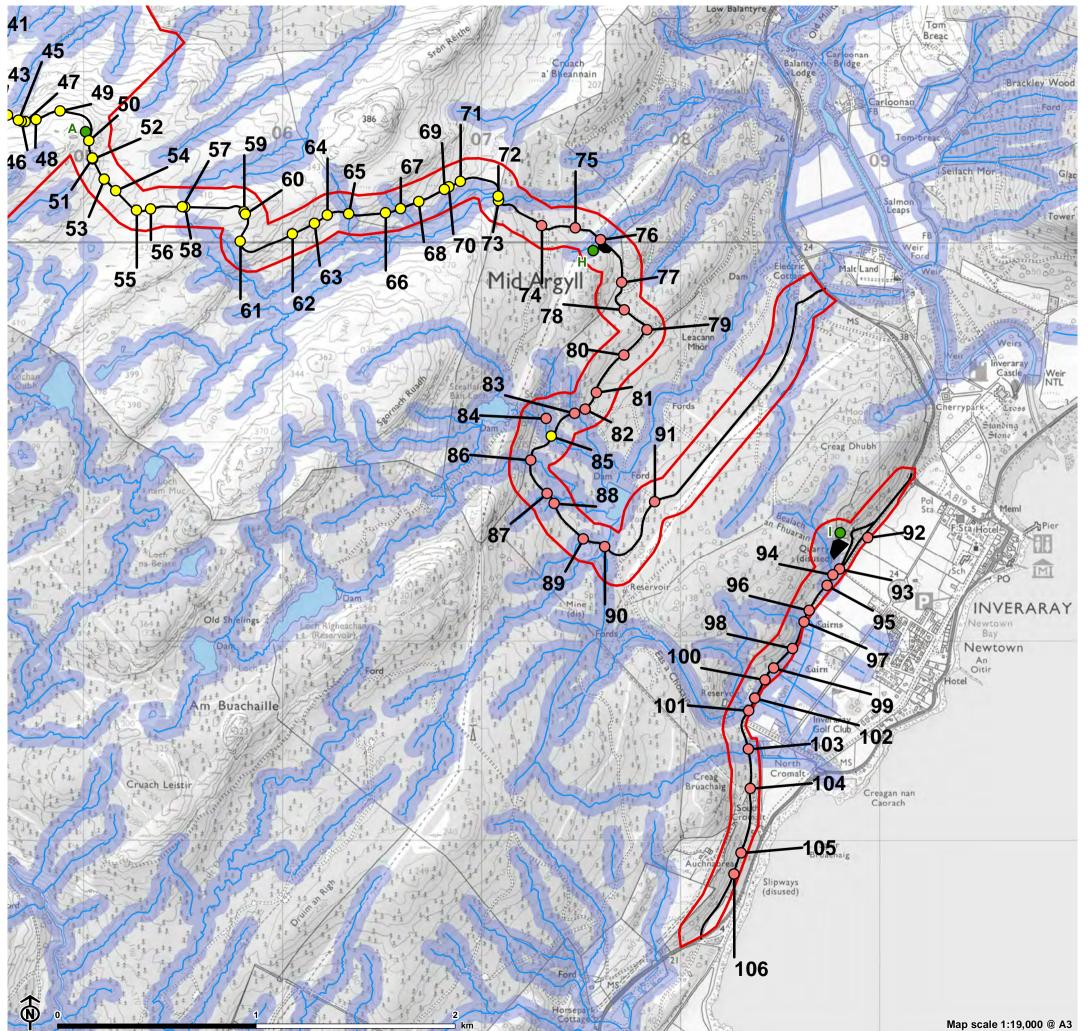


Figure 7.2.1: Watercourses and Crossings

Existing crossing


Proposed crossing


Map scale 1:18,000 @ A3

An Càrr Dubh Wind Farm for Car Duibh Wind Farm Ltd

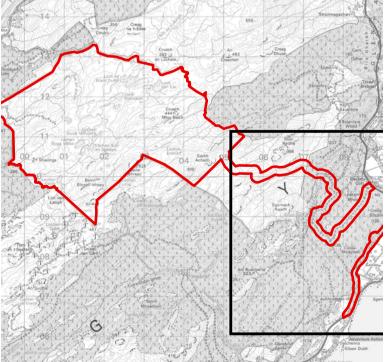

LUC

Figure 7.2.2: Watercourses and Crossings

Existing crossing

Proposed crossing

Outline Drainage Strategy Technical Note

Annexes

Annex B Watercourse Crossing Specification

Pell Frischmann		Page 1
5 Manchester Square		
London		- L
W1U 3PD		Micco
Date 06/02/2023 07:19	Designed by KIvanov	Designation
File Pipe Network & Capacity	Checked by	Dialilade
Innovyze	Network 2020.1	

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S1.000	21.675	0.100	216.8	0.000	10.00	0.0	0.600	0	525	Pipe/Conduit	•
											a
s3.000	16.962	0.760	22.3	0.000	10.00	0.0	0.600	0	300	Pipe/Conduit	a
S4.000	20.168	3.370	6.0	0.000	10.00	0.0	0.600	0	300	Pipe/Conduit	•
S5.000	26.323	2.510	10.5	0.000	10.00	0.0	0.600	0	300	Pipe/Conduit	۵
S6.000	16.279	0.440	37.0	0.000	10.00	0.0	0.600	0	300	Pipe/Conduit	a
s7.000	31.000	3.410	9.1	0.000	10.00	0.0	0.600	0	300	Pipe/Conduit	٥
S10.000	10.247	0.950	10.8	0.000	10.00	0.0	0.600	0	450	Pipe/Conduit	8
S11.000	21.422	0.080	267.8	0.000	10.00	0.0	0.600	0	450	Pipe/Conduit	8

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
S1.000	50.00	10.24	0.000	0.000	0.0	0.0	0.0	1.52	328.5	0.0	
s3.000	50.00	10.08	0.000	0.000	0.0	0.0	0.0	3.34	236.3	0.0	
S4.000	50.00	10.05	0.000	0.000	0.0	0.0	0.0	6.47	457.1	0.0	
S5.000	50.00	10.09	0.000	0.000	0.0	0.0	0.0	4.88	345.1	0.0	
S6.000	50.00	10.10	0.000	0.000	0.0	0.0	0.0	2.59	183.3	0.0	
s7.000	50.00	10.10	0.000	0.000	0.0	0.0	0.0	5.24	370.7	0.0	
S10.000	50.00	10.03	0.000	0.000	0.0	0.0	0.0	6.22	988.8	0.0	
S11.000	50.00	10.29	0.000	0.000	0.0	0.0	0.0	1.24	196.8	0.0	
				©1982-2	2020 Innov	yze					

Pell Frischmann

5 Manchester Square
London
W1U 3PD

Date 06/02/2023 07:19
File Pipe Network & Capacity... Checked by
Innovyze

Network 2020.1

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for Storm

PN	Length	Fall	Slope	I.Area	T.E.	Ba	ase	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)		Design
S12.000	29.194	2.070	14.1	0.000	10.00		0.0	0.600	0	450	Pipe/Conduit	•
S14.000	28.641	0.840	34.1	0.000	10.00		0.0	0.600	0	525	Pipe/Conduit	•
S15.000	28.641	0.820	34.9	0.000	10.00		0.0	0.600	0	525	Pipe/Conduit	۵
S17.000	25.186	2.310	10.9	0.000	10.00		0.0	0.600	0	525	Pipe/Conduit	a
S18.000	28.838	4.250	6.8	0.000	10.00		0.0	0.600	0	525	Pipe/Conduit	8
S19.000	22.407	0.980	22.9	0.000	10.00		0.0	0.600	0	450	Pipe/Conduit	8
S20.000	24.284	0.990	24.5	0.000	10.00		0.0	0.600	0	450	Pipe/Conduit	8
S21.000	10.850	0.450	24.1	0.000	10.00		0.0	0.600	0	300	Pipe/Conduit	<u> </u>

Network Results Table

	Rain (mm/hr)	T.C. (mins)	US/IL Σ (m)	I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
S12.000	50.00	10.09	0.000	0.000	0.0	0.0	0.0	5.44	864.5	0.0	
S14.000	50.00	10.12		0.000	0.0	0.0	0.0		832.4	0.0	
S15.000	50.00	10.13	0.000	0.000	0.0	0.0	0.0	3.80	822.4	0.0	
S17.000	50.00	10.06	0.000	0.000	0.0	0.0	0.0	6.81	1474.3	0.0	
S18.000	50.00	10.06	0.000	0.000	0.0	0.0	0.0	8.64	1869.6	0.0	
S19.000	50.00	10.09	0.000	0.000	0.0	0.0	0.0	4.27	678.5	0.0	
S20.000	50.00	10.10	0.000	0.000	0.0	0.0	0.0	4.12	655.0	0.0	
S21.000	50.00	10.06	0.000	0.000	0.0	0.0	0.0	3.22	227.3	0.0	

Pell Frischmann		Page 3
5 Manchester Square		
London		- Co
W1U 3PD		Micco
Date 06/02/2023 07:19	Designed by KIvanov	Designation
File Pipe Network & Capacity	Checked by	Dialilade
Innovyze	Network 2020.1	

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (1/s)		HYD SECT	DIA (mm)	Section Type	Auto Design
s23.000	15.879	0.280	56.7	0.000	10.00	0.0	0.600	0	525	Pipe/Conduit	•
S25.000	29.222	1.500	19.5	0.000	10.00	0.0	0.600	0	450	Pipe/Conduit	•
s26.000	17.969	1.790	10.0	0.000	10.00	0.0	0.600	0	300	Pipe/Conduit	٥
S28.000	36.344	2.430	15.0	0.000	10.00	0.0	0.600	0	450	Pipe/Conduit	8
s30.000	20.729	0.440	47.1	0.000	10.00	0.0	0.600	0	450	Pipe/Conduit	a
s31.000	35.812	4.070	8.8	0.000	10.00	0.0	0.600	0	525	Pipe/Conduit	٥
s32.000	30.955	2.680	11.6	0.000	10.00	0.0	0.600	0	525	Pipe/Conduit	•

Network Results Table										
PN	Rain (mm/hr)	T.C.	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)	Foul	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
S23.000	50.00	10.09	0.000	0.000	0.0	0.0	0.0	2.98	644.8	0.0
s25.000	50.00	10.11	0.000	0.000	0.0	0.0	0.0	4.62	735.2	0.0
S26.000	50.00	10.06	0.000	0.000	0.0	0.0	0.0	4.99	352.7	0.0
S28.000	50.00	10.11	0.000	0.000	0.0	0.0	0.0	5.28	839.4	0.0
s30.000	50.00	10.12	0.000	0.000	0.0	0.0	0.0	2.97	472.0	0.0
s31.000	50.00	10.08	0.000	0.000	0.0	0.0	0.0	7.58	1641.4	0.0
s32.000	50.00	10.08	0.000	0.000	0.0	0.0	0.0	6.62	1432.3	0.0
				©1982-2	2020 Innov	yze				

Pell Frischmann		Page 4
5 Manchester Square		
London		·
W1U 3PD		Micco
Date 06/02/2023 07:19	Designed by KIvanov	Drainage
File Pipe Network & Capacity	Checked by	Dialilacie
Innovyze	Network 2020.1	

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for Storm

PN	Length	Fall	Slope	I.Area	T.E.	Ba	ase	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)		Design
s33.000	20.796	1.980	10.5	0.000	10.00		0.0	0.600	0	450	Pipe/Conduit	a
S34.000	1.000	1.000	1.0	0.000	10.00		0.0	0.600	0	300	Pipe/Conduit	0
S35.000	1.000	1.000	1.0	0.000	10.00		0.0	0.600	0	300	Pipe/Conduit	a
s37.000	23.733	3.570	6.6	0.000	10.00		0.0	0.600	0	300	Pipe/Conduit	8
S38.000	16.079	1.860	8.6	0.000	10.00		0.0	0.600	0	525	Pipe/Conduit	8
s39.000	27.941	3.160	8.8	0.000	10.00		0.0	0.600	0	450	Pipe/Conduit	8
S40.000	28.380	3.070	9.2	0.000	10.00		0.0	0.600	0	450	Pipe/Conduit	8
S41.000	27.112	2.460	11.0	0.000	10.00		0.0	0.600	0	300	Pipe/Conduit	8
S42.000	17.510	2.580	6.8	0.000	10.00		0.0	0.600	0	450	Pipe/Conduit	<u> </u>

Network Results Table

PN	Rain (mm/hr)	T.C.	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
s33.000	50.00	10.06	0.000	0.000	0.0	0.0	0.0	6.30	1002.1	0.0	
S34.000	50.00	10.00	0.000	0.000	0.0	0.0	0.0	15.84	1119.6	0.0	
S35.000	50.00	10.00	0.000	0.000	0.0	0.0	0.0	15.84	1119.6	0.0	
s37.000	50.00	10.06	0.000	0.000	0.0	0.0	0.0	6.14	433.7	0.0	
S38.000	50.00	10.04	0.000	0.000	0.0	0.0	0.0	7.65	1656.0	0.0	
s39.000	50.00	10.07	0.000	0.000	0.0	0.0	0.0	6.87	1092.3	0.0	
S40.000	50.00	10.07	0.000	0.000	0.0	0.0	0.0	6.72	1068.2	0.0	
S41.000	50.00	10.09	0.000	0.000	0.0	0.0	0.0	4.76	336.6	0.0	
S42.000	50.00	10.04	0.000	0.000	0.0	0.0	0.0	7.84	1247.1	0.0	
				e1 000 f							

Pell Frischmann		Page 5
5 Manchester Square		
London		
W1U 3PD		Micco
Date 06/02/2023 07:19	Designed by KIvanov	Drainage
File Pipe Network & Capacity	Checked by	Dialilage
Innovvze	Network 2020.1	

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S43.000	39.815	5.920	6.7	0.000	10.00	0.0	0.600	0	300	Pipe/Conduit	0
S44.000	34.917	6.660	5.2	0.000	10.00	0.0	0.600	0	300	Pipe/Conduit	a
S45.000	16.543	6.630	2.5	0.000	10.00	0.0	0.600	0	300	Pipe/Conduit	a
S46.000	18.040	6.460	2.8	0.000	10.00	0.0	0.600	0	300	Pipe/Conduit	•
S47.000	15.452	2.140	7.2	0.000	10.00	0.0	0.600	0	300	Pipe/Conduit	•
S48.000	15.926	4.040	3.9	0.000	10.00	0.0	0.600	0	300	Pipe/Conduit	&
S49.000	26.644	5.100	5.2	0.000	10.00	0.0	0.600	0	300	Pipe/Conduit	٥
S50.000	28.217	7.550	3.7	0.000	10.00	0.0	0.600	0	300	Pipe/Conduit	a
S51.000	21.539	4.220	5.1	0.000	10.00	0.0	0.600	0	300	Pipe/Conduit	a
S52.000	2.220	12.458	0.2	0.000	10.00	0.0	0.600	0	300	Pipe/Conduit	a
s53.000	27.038	1.910	14.2	0.000	10.00	0.0	0.600	0	300	Pipe/Conduit	8

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
S43.000	50.00	10.11	0.000	0.000	0.0	0.0	0.0	6.10	431.2	0.0
S44.000	50.00	10.08	0.000	0.000	0.0	0.0	0.0	6.91	488.5	0.0
S45.000	50.00	10.03	0.000	0.000	0.0	0.0	0.0	10.02	708.5	0.0
S46.000	50.00	10.03	0.000	0.000	0.0	0.0	0.0	9.47	669.6	0.0
S47.000	50.00	10.04	0.000	0.000	0.0	0.0	0.0	5.89	416.1	0.0
S48.000	50.00	10.03	0.000	0.000	0.0	0.0	0.0	7.97	563.4	0.0
S49.000	50.00	10.06	0.000	0.000	0.0	0.0	0.0	6.92	489.3	0.0
S50.000	50.00	10.06	0.000	0.000	0.0	0.0	0.0	8.19	578.7	0.0
S51.000	50.00	10.05	0.000	0.000	0.0	0.0	0.0	7.00	495.1	0.0
S52.000	50.00	10.00	0.000	0.000	0.0	0.0	0.0	37.54	2653.6	0.0
s53.000	50.00	10.11	0.000	0.000	0.0	0.0	0.0	4.20	296.9	0.0
				©1982-2	2020 Innov	yze				

Pell Frischmann		Page 6
5 Manchester Square		
London		C
W1U 3PD		Micro
Date 06/02/2023 07:19	Designed by KIvanov	Drainage
File Pipe Network & Capacity	Checked by	Dialilage
Innovyze	Network 2020.1	

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S54.000	17.686	0.690	25.6	0.000	10.00	0.0	0.600	0	300	Pipe/Conduit	a
S55.000	48.807	0.750	65.1	0.000	10.00	0.0	0.600	0	450	Pipe/Conduit	•
S56.000	13.236	0.800	16.5	0.000	10.00	0.0	0.600	0	300	Pipe/Conduit	۵
S57.000	28.363	2.020	14.0	0.000	10.00	0.0	0.600	0	450	Pipe/Conduit	۵
S58.000	24.037	1.390	17.3	0.000	10.00	0.0	0.600	0	450	Pipe/Conduit	•
S59.000	17.990	1.200	15.0	0.000	10.00	0.0	0.600	0	300	Pipe/Conduit	8
s60.000	17.061	0.980	17.4	0.000	10.00	0.0	0.600	0	300	Pipe/Conduit	a
S61.000	15.808	1.280	12.4	0.000	10.00	0.0	0.600	0	450	Pipe/Conduit	•
S62.000	14.090	3.620	3.9	0.000	10.00	0.0	0.600	0	300	Pipe/Conduit	@
s63.000	44.080	20.420	2.2	0.000	10.00	0.0	0.600	0	300	Pipe/Conduit	a

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
S54.000	50.00	10.09	0.000	0.000	0.0	0.0	0.0	3.12	220.4	0.0	
S55.000	50.00	10.32	0.000	0.000	0.0	0.0	0.0	2.52	401.3	0.0	
S56.000	50.00	10.06	0.000	0.000	0.0	0.0	0.0	3.88	274.6	0.0	
S57.000	50.00	10.09	0.000	0.000	0.0	0.0	0.0	5.45	866.4	0.0	
S58.000	50.00	10.08	0.000	0.000	0.0	0.0	0.0	4.91	780.5	0.0	
S59.000	50.00	10.07	0.000	0.000	0.0	0.0	0.0	4.08	288.5	0.0	
s60.000	50.00	10.08	0.000	0.000	0.0	0.0	0.0	3.79	267.6	0.0	
S61.000	50.00	10.05	0.000	0.000	0.0	0.0	0.0	5.81	923.9	0.0	
S62.000	50.00	10.03	0.000	0.000	0.0	0.0	0.0	8.02	567.0	0.0	
\$63.000	50.00	10.07	0.000	0.000	0.0	0.0	0.0	10.78	761.7	0.0	

Pell Frischmann		Page 7
5 Manchester Square		
London		- L
W1U 3PD		Micco
Date 06/02/2023 07:19	Designed by KIvanov	Designation
File Pipe Network & Capacity	Checked by	Dialilade
Innovyze	Network 2020.1	

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S64.000	17.081	5.810	2.9	0.000	10.00	0.0	0.600	0	300	Pipe/Conduit	0
s65.000	12.781	3.080	4.1	0.000	10.00	0.0	0.600	0	300	Pipe/Conduit	•
S66.000	26.711	7.160	3.7	0.000	10.00	0.0	0.600	0	300	Pipe/Conduit	•
S67.000	25.469	7.890	3.2	0.000	10.00	0.0	0.600	0	300	Pipe/Conduit	•
S68.000	23.457	5.490	4.3	0.000	10.00	0.0	0.600	0	300	Pipe/Conduit	۵
S69.000	19.083	5.620	3.4	0.000	10.00	0.0	0.600	0	300	Pipe/Conduit	8
s70.000	25.440	8.140	3.1	0.000	10.00	0.0	0.600	0	300	Pipe/Conduit	۵
S71.000	20.575	7.610	2.7	0.000	10.00	0.0	0.600	0	300	Pipe/Conduit	8
s73.000	13.364	1.430	9.3	1.000	10.00	0.0	0.600	0	450	Pipe/Conduit	a
S74.000	24.186	2.240	10.8	0.000	10.00	0.0	0.600	0	450	Pipe/Conduit	.

Network Results Table

Network Results lable											
PN	Rain (mm/hr)	T.C.	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
S64.000	50.00	10.03	0.000	0.000	0.0	0.0	0.0	9.23	652.6	0.0	
S65.000	50.00	10.03	0.000	0.000	0.0	0.0	0.0	7.77	549.2	0.0	
S66.000	50.00	10.05	0.000	0.000	0.0	0.0	0.0	8.19	579.2	0.0	
s67.000	50.00	10.05	0.000	0.000	0.0	0.0	0.0	8.81	622.8	0.0	
S68.000	50.00	10.05	0.000	0.000	0.0	0.0	0.0	7.66	541.2	0.0	
s69.000	50.00	10.04	0.000	0.000	0.0	0.0	0.0	8.59	607.2	0.0	
s70.000	50.00	10.05	0.000	0.000	0.0	0.0	0.0	8.95	632.9	0.0	
S71.000	50.00	10.04	0.000	0.000	0.0	0.0	0.0	9.63	680.6	0.0	
S73.000	50.00	10.03	0.000	1.000	0.0	0.0	0.0	6.68	1062.4	135.4	
S74.000	50.00	10.06	0.000	0.000	0.0	0.0	0.0	6.21	988.3	0.0	
				©1982-2	2020 Innov	yze					_

Pell Frischmann

5 Manchester Square
London
W1U 3PD

Date 06/02/2023 07:19
File Pipe Network & Capacity... Checked by
Innovyze

Network 2020.1

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
s75.000	12.986	1.350	9.6	0.000	10.00	0.0	0.600	0	450	Pipe/Conduit	8
S76.000	14.050	1.100	12.8	0.000	10.00	0.0	0.600	0	450	Pipe/Conduit	0
S77.000	10.431	0.640	16.3	0.000	10.00	0.0	0.600	0	300	Pipe/Conduit	a
S78.000	13.121	0.410	32.0	0.000	10.00	0.0	0.600	0	450	Pipe/Conduit	۵
S80.000	17.656	4.090	4.3	0.000	10.00	0.0	0.600	0	300	Pipe/Conduit	•
S81.000	19.211	6.850	2.8	0.000	10.00	0.0	0.600	0	250	Pipe/Conduit	8
S82.000	14.786	1.720	8.6	0.000	10.00	0.0	0.600	0	300	Pipe/Conduit	8
S83.000	14.954	3.090	4.8	0.000	10.00	0.0	0.600	0	850	Pipe/Conduit	<u> </u>
S84.000	1.000	1.000	1.0	0.000	10.00	0.0	0.600	0	100	Pipe/Conduit	•

Network Results Table

PN	Rain (mm/hr)	T.C.	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)	Foul (1/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
S75.000	50.00	10.03	0.000	0.000	0.0	0.0	0.0	6.58	1047.2	0.0	
S76.000	50.00	10.04	0.000	0.000	0.0	0.0	0.0	5.71	908.5	0.0	
S77.000	50.00	10.04	0.000	0.000	0.0	0.0	0.0	3.91	276.6	0.0	
S78.000	50.00	10.06	0.000	0.000	0.0	0.0	0.0	3.60	573.2	0.0	
S80.000	50.00	10.04	0.000	0.000	0.0	0.0	0.0	7.62	538.4	0.0	
S81.000	50.00	10.04	0.000	0.000	0.0	0.0	0.0	8.42	413.3	0.0	
S82.000	50.00	10.05	0.000	0.000	0.0	0.0	0.0	5.39	381.3	0.0	
S83.000	50.00	10.02	0.000	0.000	0.0	0.0	0.0	13.80	7828.5	0.0	
S84.000	50.00	10.00	0.000	0.000	0.0	0.0	0.0	7.80	61.3	0.0	

Pell Frischmann		Page 9
5 Manchester Square		
London		
W1U 3PD		Micco
Date 06/02/2023 07:19	Designed by KIvanov	Designation
File Pipe Network & Capacity	Checked by	Dialilage
Innovyze	Network 2020.1	

Network Design Table for Storm

PN	Length	Fall	STope	I.Area	T.E.	Base	ĸ	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (1/s)	(mm)	SECT	(mm)		Design

S87.000	15.881	0.960	16.5	0.000	10.00	0.0	0.600	0	450	Pipe/Conduit	a
S88.000	18.286	4.420	4.1	0.000	10.00	0.0	0.600	0	450	Pipe/Conduit	•
s90.000	17.344	0.820	21.2	0.000	10.00	0.0	0.600	0	1200	Pipe/Conduit	å
S91.000	11.983	0.270	44.4	0.000	10.00	0.0	0.600	0	300	Pipe/Conduit	٥
S92.000	17.291	2.890	6.0	0.000	10.00	0.0	0.600	0	250	Pipe/Conduit	0
s93.000	15.338	2.920	5.3	0.000	10.00	0.0	0.600	0	450	Pipe/Conduit	a
S94.000	14.764	1.630	9.1	0.000	10.00	0.0	0.600	0	600	Pipe/Conduit	a
S95.000	15.358	1.150	13.4	0.000	10.00	0.0	0.600	0	450	Pipe/Conduit	a

Network Results Table

PN	Rain	T.C.	US/IL	$\Sigma \text{ I.Area}$	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)

S87.000	50.00	10.05 0.000	0.000	0.0	0.0	0.0 5.02 798.0 0.0
S88.000	50.00	10.03 0.000	0.000	0.0	0.0	0.0 10.05 1597.9 0.0
S90.000	50.00	10.04 0.000	0.000	0.0	0.0	0.0 8.15 9218.7 0.0
S91.000	50.00	10.08 0.000	0.000	0.0	0.0	0.0 2.37 167.3 0.0
S92.000	50.00	10.05 0.000	0.000	0.0	0.0	0.0 5.76 282.7 0.0
S93.000	50.00	10.03 0.000	0.000	0.0	0.0	0.0 8.91 1417.8 0.0
S94.000	50.00	10.03 0.000	0.000	0.0	0.0	0.0 8.12 2296.5 0.0
S95.000	50.00	10.05 0.000	0.000	0.0	0.0	0.0 5.59 888.4 0.0
			©1982-202	0 Innovyz	ze	

Pell Frischmann		Page 10
5 Manchester Square		2
London		60
W1U 3PD		Micco
Date 06/02/2023 07:19	Designed by KIvanov	Drainage
File Pipe Network & Capacity	Checked by	Dialilade
Innovyze	Network 2020.1	

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
s96.000	12.738	1.800	7.1	0.000	10.00	0.0	0.600	0	450	Pipe/Conduit	0
s97.000	17.791	6.000	3.0	0.000	10.00	0.0	0.600	0	450	Pipe/Conduit	•
S98.000	15.182	4.170	3.6	0.000	10.00	0.0	0.600	0	450	Pipe/Conduit	•
S99.000	15.760	4.060	3.9	0.000	10.00	0.0	0.600	0	450	Pipe/Conduit	•
S100.000	14.448	2.810	5.1	0.000	10.00	0.0	0.600	0	450	Pipe/Conduit	•
S101.000	19.664	0.930	21.1	0.000	10.00	0.0	0.600	0	1000	Pipe/Conduit	•
S102.000	32.873	3.430	9.6	0.000	10.00	0.0	0.600	0	450	Pipe/Conduit	8
s103.000	16.089	3.360	4.8	0.000	10.00	0.0	0.600	0	800	Pipe/Conduit	8
s104.000	16.355	4.520	3.6	0.000	10.00	0.0	0.600	0	300	Pipe/Conduit	•
S105.000	29.133	10.580	2.8	0.000	10.00	0.0	0.600	0	250	Pipe/Conduit	a

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL Σ (m)	I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
S96.000	50.00	10.03	0.000	0.000	0.0	0.0	0.0	7.68	1221.2	0.0	
S97.000	50.00	10.02	0.000	0.000	0.0	0.0	0.0	11.87	1887.8	0.0	
S98.000	50.00	10.02	0.000	0.000	0.0	0.0	0.0	10.71	1703.5	0.0	
s99.000	50.00	10.03	0.000	0.000	0.0	0.0	0.0	10.37	1649.7	0.0	
S100.000	50.00	10.03	0.000	0.000	0.0	0.0	0.0	9.01	1433.1	0.0	
S101.000	50.00	10.04	0.000	0.000	0.0	0.0	0.0	7.29	5724.3	0.0	
S102.000	50.00	10.08	0.000	0.000	0.0	0.0	0.0	6.60	1049.1	0.0	
S103.000	50.00	10.02	0.000	0.000	0.0	0.0	0.0	13.36	6715.2	0.0	
S104.000	50.00	10.03	0.000	0.000	0.0	0.0	0.0	8.32	588.2	0.0	
S105.000	50.00	10.06	0.000	0.000	0.0	0.0	0.0	8.50	417.1	0.0	

Pell Frischmann		Page 11
5 Manchester Square		
London		* G-0
W1U 3PD		Micco
Date 06/02/2023 07:19	Designed by KIvanov	Drainage
File Pipe Network & Capacity	Checked by	Dialilade
Innovyze	Network 2020.1	

Network Design Table for Storm

PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto (m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm)

\$106.000 24.499 7.760 3.2 0.000 10.00 0.0 0.600 o 300 Pipe/Conduit

Network Results Table

PN Rain T.C. US/IL Σ I.Area Σ Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (1/s) (m/s) (1/s) (1/s)

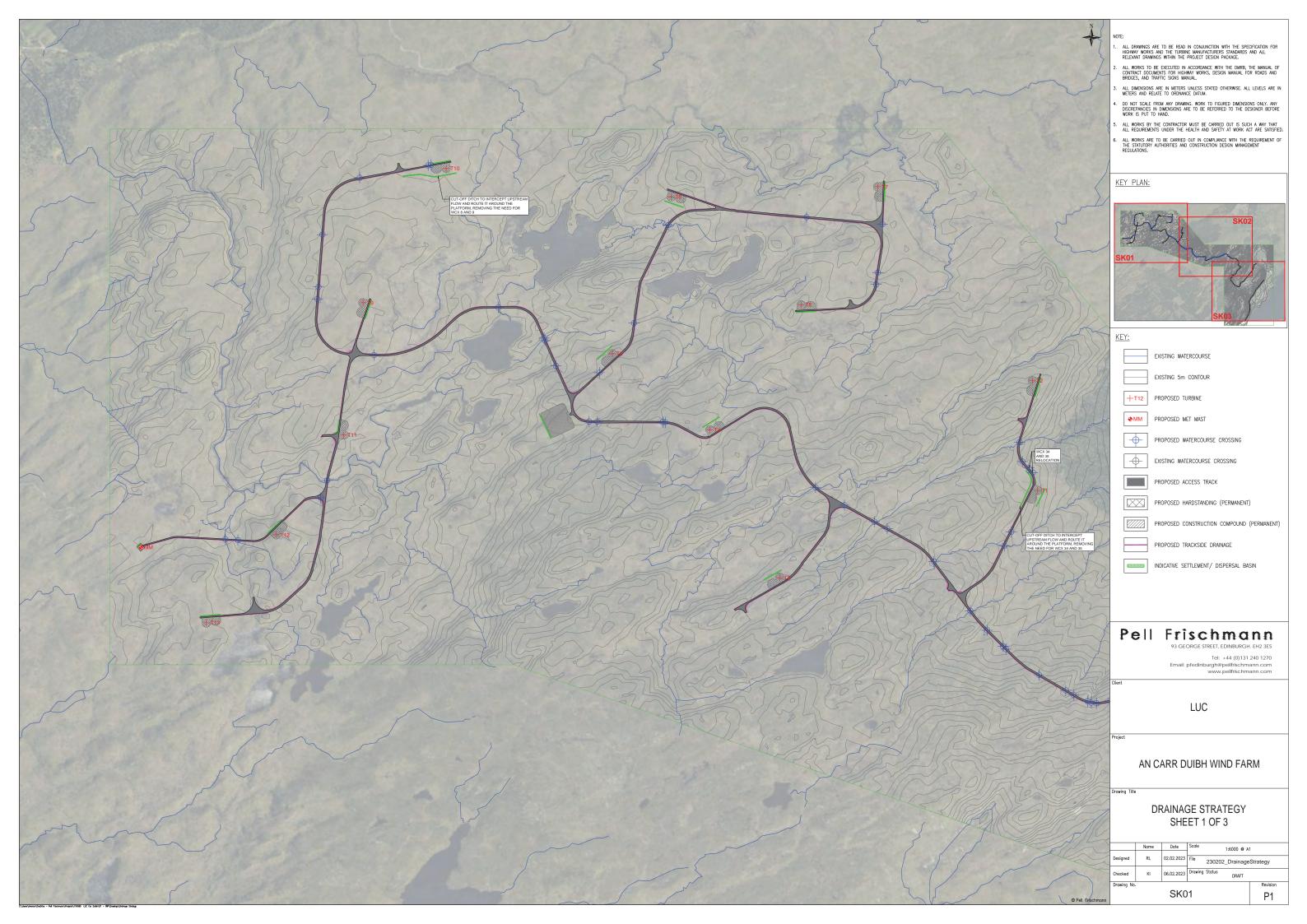
\$106.000 50.00 10.05 **0.000** 0.000 0.0 0.0 8.91 629.7 0.0

Crossing ID	US Level (mAOD)	l	Fall (m)	Slope (1 in X)	Length (m)	30-yr RP Flow (m3/s)	30-yr RP Flow (I/s)	Culvert Capacity	Culvert Type	Culvert Size	Notes
1	339.19		0.06	216.8	21.675	0.30	297.39	328.5	CIRC	525	
2	331.62	331.4	0.22	126	27.619	14.29	14291.24	-	BRIDGE		Bridge crossing required to maintain channel flow. Deck soffit to be determined during detailed design stage.
3		351.57	0.76		16.962	0.12	116.76		CIRC	300	
4	348.73	345.36		6			210.61		CIRC	300	
5		344.62	2.51	10	26.323		210.61		CIRC	300	
6		346.38		37	16.279		120		CIRC	300	
7	338.37	334.96	3.41	9	31	0.12	116.76	370.7	CIRC	300	
8	338.83	338.83				0.12	116.76				Watercourses to be intercepted by a cut-off ditch and to be
9	339.21	339.21				0.12	116.76				discharged freely overland downstream
10	338.15	337.2	0.95	11	10.247	0.76	757.45	988.8	CIRC	450	
11	337.18	337.17	0.01	2142	21.422	0.30	297.39	23.4			
12	352.19	350.12	2.07	14	29.194	0.46	459.32	864.5	CIRC	450	
13	373.98	368.56	5.42	11	61.621	0.21	210.61	1119.6	CIRC	300	
14	338.26	337.42	0.84	35	28.641	0.83	828.51	832.4	CIRC	525	
15	338.26	337.44	0.82	35	28.641	0.76	757.45	822.4	CIRC	525	

16	336.41	334.85	1.56	15	22.819	5.22	5221.88		BRIDGE		Bridge crossing required to maintain channel flow. Deck soffit to be determined during detailed design stage.
17	382.09	379.78	2.31	11	25.186	1.30	1301.39	1474.3		525	
18	388.12	383.87	4.25	7	28.838	1.30	1301.39	1869.6	CIRC	525	
19	405.84	404.86	0.98	23	22.407	0.38	379.88	678.5	CIRC	450	
20	406.01	405.02	0.99	25	24.284	0.46	459.32	655.0	CIRC	450	
21	360.4	359.95	0.45	24	10.85	<0.12	120	227.3	CIRC	300	
22	341.81	341.34	0.47	36	16.886	3.53	3534.64	-	BRIDGE		Bridge crossing required to maintain channel flow. Deck soffit to be determined during detailed design stage.
23	363.1	362.82	0.28	57	15.879	0.54	536.42	644.8	CIRC	525	
24	363.01	358.06	4.95	12	60.408	0.76	757.45	1119.6		300	
25	371.78	370.28	1.5	19	29.222	0.54	536.42		CIRC	450	
26	379.9	378.11	1.79	10	17.969	<0.12	120		CIRC	300	

	27	424.76	423.88	0.88	32	28.141	3.70	3698.05		BRIDGE		Bridge crossing required to maintain channel flow. Deck soffit to be determined during detailed design stage.
	28	423.04	420.61	2.43	15	36.344	0.38	379.88	839.4	CIRC	450	
	29	420.84	420.79	0.05	706	35.31	0.69	685.21	-	BRIDGE		Bridge crossing required to maintain channel flow. Deck soffit to be determined during detailed design stage.
1	30	426.97	426.53	0.44	47	20.729	<0.12	120	472	CIRC	450	
	31	423.95	419.88	4.07	9	35.812	1.56	1557.77	1647.4	CIRC	525	
	32	390.04	387.52	2.52	12	30.955	1.43	1430.59	1432.2	CIRC	525	
	33	388.33	386.35	1.98	11	20.796	0.38	379.88	1002.1	CIRC	450	
	34	391.82	376.77	15.1	7	100.687	<0.12	120	1119.6	CIRC	300	Crossing location relocated via
	35	398.28	381.44	16.8	6	104.271	<0.12	120	1119.6	CIRC	300	upstream to avoid crossing underneath T1 platform

36	397.57	395.62	1.95	7	13.93	1.93	1929.24	-	BRIDGE		Bridge crossing required to maintain channel flow. Deck soffit to be determined during detailed design stage.
37	398.81	395.24	3.57	7	23.733	0.12	116.76	433.7		300	
38	416.21	414.35	1.86	9	16.079	1.56	1557.77		CIRC	525	
39	409.33	406.17	3.16	9	27.941	0.61	611.61	1092.3	CIRC	450	
40	412.32	409.25	3.07	9	28.38	0.38	379.88	1068.2		450	
41	411.97	409.51	2.46	11	27.112	<0.12	120	336.6	CIRC	300	
42	430.31	427.73	2.58	7	17.51	0.69	685.21	1247.1	CIRC	450	
43	438.89	432.97	5.92	7	39.815	0.12	116.76	431.2	CIRC	300	
44	439.63	432.97	6.66	5	34.917	0.38	379.88	488.5	CIRC	300	
45	453.47	446.84	6.63	2	16.543	0.38	379.88	708.5	CIRC	300	
46	453.49	447.03	6.46	3	18.04	<0.12	120	669.6	CIRC	300	
47	451.87	449.73	2.14	7	15.452	0.12	116.76	416.1	CIRC	300	
48	461.13	457.09	4.04	4	15.926	<0.12	120	563.4	CIRC	300	
49	468.9	463.8	5.1	5	26.644	<0.12	120	489.3	CIRC	300	
50	463.01	455.46	7.55	4	28.217	<0.12	120	578.7	CIRC	300	
51	455.79	451.57	4.22	5	21.539	0.21	210.61	495.1	CIRC	300	
52	455.15	452.93	2.22	6	12.458	<0.12	120	2653.6	CIRC	300	
53	440.81	438.9	1.91	14	27.038	<0.12	120	296.9	CIRC	300	
54	434.72	434.03	0.69	26	17.686	<0.12	120	220.4	CIRC	300	
55	415.44	414.69	0.75	65	48.807	0.38	379.88	401.3	CIRC	450	
56	413.93	413.13	0.8	17	13.236	<0.12	120	274.6	CIRC	300	
57	395.5	393.48	2.02	14	28.363	0.46	459.32	866.4	CIRC	450	
58	395.22	393.83	1.39	17	24.037	0.46	459.32	780.5	CIRC	450	
59	395.12	393.92	1.2	15	17.99	<0.12	120	288.5	CIRC	300	
60	394.17	393.19	0.98	17	17.061	<0.12	120	267.6	CIRC	300	
61	371.89	370.61	1.28	12	15.808	0.61	611.61	923.9	CIRC	450	
62	330.77	327.15	3.62	4	14.09	0.21	210.61	567.0	CIRC	300	


63	322.16	301.74	20.4	2	44.08	<0.12	120	761.7	CIRC	300		
64	307.56	301.75	5.81	3	17.081	<0.12	120	652.6	CIRC	300		
65	295.32	292.24	3.08	4	12.781	0.30	297.39	549.2	CIRC	300		
66	271.55	264.39	7.16	4	26.711	<0.12	120	579.2	CIRC	300		
67	263.1	255.21	7.89	3	25.469	0.46	459.32	622.8	CIRC	300		
68	251.76	246.27	5.49	4	23.457	<0.12	120	541.2	CIRC	300		
69	236.79	231.17	5.62	3	19.083	<0.12	120	607.2	CIRC	300		
70	229.01	220.87	8.14	3	25.44	<0.12	120		CIRC	300		
71	216.39	208.78	7.61	3	20.575	<0.12	120	680.6	CIRC	300		
72	194.94	193.24	1.7	15	25.706	9.51	9511.02	-	BRIDGE		Bridge crossing required to maintain channel flow. Deck soffit to be determined during detailed design stage.	
73	194.46	193.03	1.43			0.83	828.51	1062.4	CIRC	450		
85	115.21	115.21				4.55	4550.01	-	BRIDGE		Bridge crossing required to maintain channel flow. Deck soffit to be determined during detailed design stage.	
	Existing watercourse crossings											
74	176.23	173.99	2.24	11	24.186	0.38	379.88		CIRC	450		
75	162.34	160.99	1.35	10	12.986	<0.12	120	1047.2		450		
76	158.79	157.69	1.1	13	14.05	0.38	379.88		CIRC	450		
77	141.74	141.1	0.64	16	10.431	<0.12	120	276.6	CIRC	300		

78	126.42	126.42				0.61	611.61	573.2		450	
79		-0.41	0.41	32	13.121	0.12	116.76	1119.6	CIRC	300	
80	115.16	111.07	4.09	4	17.656	<0.12	120	538.4	CIRC	300	
81	119.25	112.4	6.85	3	19.211	<0.12	120	413.3	CIRC	250	
82	118.09	116.37	1.72	9	14.786	<0.12	120	381.3	CIRC	300	
83	120.95	117.86	3.09	5	14.954	0.83	828.51	7828.5	CIRC	850	
84											Water crossing is not along the latest proposed alignment
86	121.82	117.98	3.84	4	15.646	8.96	8956.29	9564.7	ARCH	Arch height 150cm Bridge sides 200cm wide	
87	109.61	108.65	0.96	17	15.881	0.46	459.32	798.0	CIRC	450	
88	109.28	104.86	4.42	4	18.286	0.30	297.39	1597.9	CIRC	450	
89	98.54	97.89	0.65	18	11.911	1.56	1557.77	1852.5	SQUARE	70X70	
90	90.77	89.95	0.82	21	17.344	3.86	3860.22	9218.7	CIRC	1200	
91	107.74	107.47	0.27	44	11.983	0.12	116.76	167.3	CIRC	300	
92	33.7	30.81	2.89	6	17.291	<0.12	120	282.7	CIRC	250	
93	35.18	32.26	2.92	5	15.338	<0.12	120	1417.8	CIRC	450	
94	34.57	32.94	1.63	9	14.764	<0.12	120	2296.95	CIRC	600	
95	31.55	30.4	1.15	13	15.358	<0.12	120	888.4	CIRC	600	
96	28.73	26.93	1.8	7	12.738	0.30	297.39	1221.2	CIRC	450	
97	31.74	25.74	6	3	17.791	0.38	379.88	1887.8	CIRC	450	
98	30.94	26.77	4.17	4	15.182	0.21	210.61	1703.5	CIRC	450	
99	36.46	32.4	4.06	4	15.76	<0.12	120	1649.7	CIRC	450	
100	31.39	28.58	2.81	5	14.448	0.12	116.76	1433.1	CIRC	450	
101	27.23	26.3	0.93	21	19.664	6.03	6028.65	5724.3	CIRC	1000	
102	26.86	23.43	3.43	10	32.873	1.24	1235.95	1049.1	CIRC	450	
103	27.91	24.55	3.36	5	16.089	1.87	1868.26	6715.2	CIRC	800	
104	26.83	22.31	4.52	4	16.355	0.12	116.76	588.2	CIRC	300	
105	30.22	19.64	10.6	3	29.133	<0.12	120	417.1	CIRC	250	
106	23.82	16.06	7.76	3	24.499	<0.12	120	629.7	CIRC	300	

Outline Drainage Strategy Technical Note

Annexes

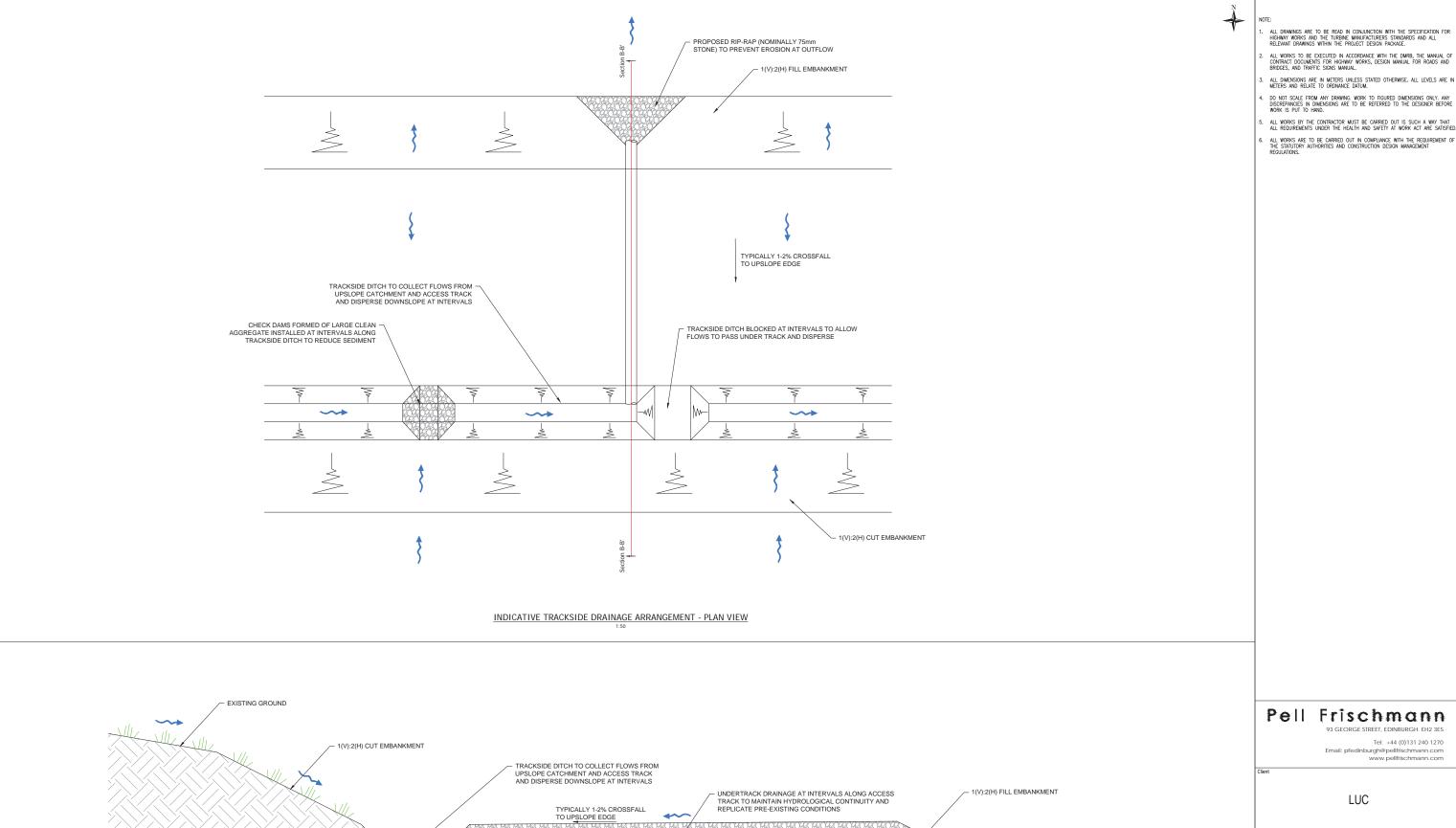
Annex C Drawings

TYPICALLY 1-2% CROSSFALL - COMPACTED PERMEABLE GRAVEL (NOMINALLY 10-20mm) - BULK FILL TO BE FORMED OF CLEAN, PERMEABLE AGGREGATE (6F2 OR SIMILAR) SETTLEMENT CHANNEL TO ALLOW ATTENUATION AND DISPERSAL OF RUN-OFF FROM HARDSTANDING 150mm THICK SEMI-PERMEABLE TOPSOIL PLANTED WITH NATIVE VEGETATION EXISTING GROUND

SECTION A-A'

Pell Frischmann

Tel: +44 (0)131 240 1270 Email: pfedinburgh@pellfrischmann.com www.pellfrischmann.com


LUC

AN CARR DUIBH WIND FARM

INDICATIVE HARDSTAND DRAINAGE ARRANGEMENT

	Name	Date	Scale 1:500 @ A1
Designed	RL	02.02.2023	File 230202_DrainageStrategy
Checked	кі	09.03.2023	Drawing Status DRAFT
Drawing No.		•	Revision

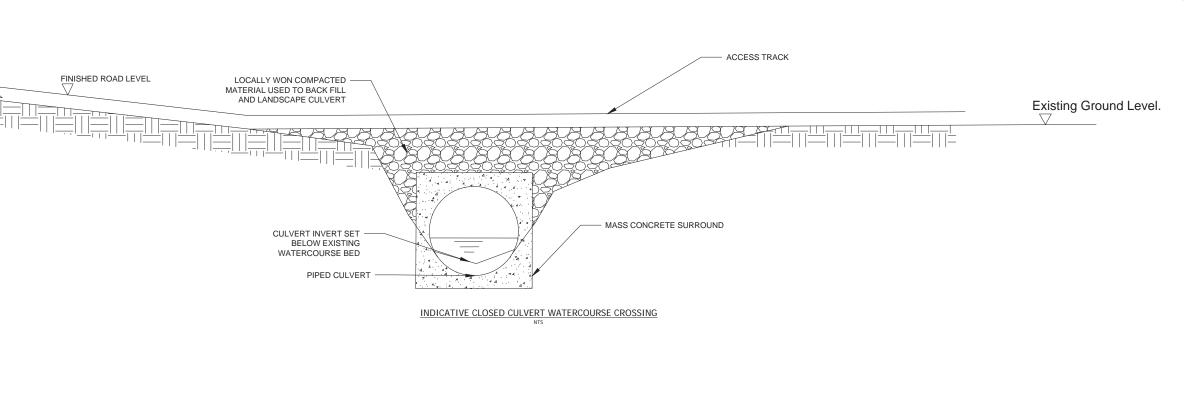
P1

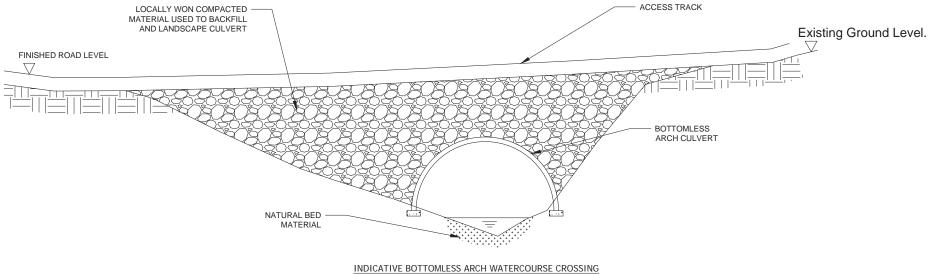
Pell Frischmann

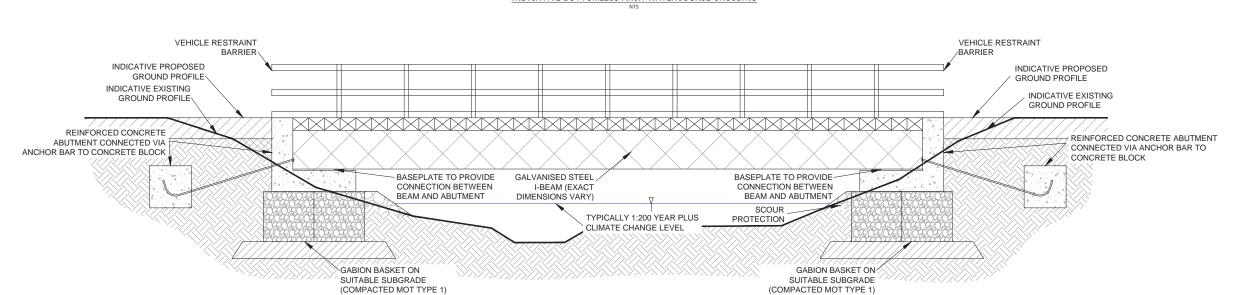
Tel: +44 (0)131 240 1270 Email: pfedinburgh@pellfrischmann.com www.pellfrischmann.com

LUC

AN CARR DUIBH WIND FARM


EXISTING GROUND


PROPOSED RIP-RAP (NOMINALLY 75mm STONE) TO PREVENT EROSION AT OUTFLOW


INDICATIVE TRACKSIDE DRAINAGE ARRANGEMENT

AS SHOWN @ A1 RL 02.02.2023 File 230202_DrainageStrategy KI 09.03.2023 DRAFT SK05 P1

SECTION B-B'

INDICATIVE TYPICAL OPEN-SPAN WATERCOURSE CROSSING

NOTE:

- ALL DRAWINGS ARE TO BE READ IN CONJUNCTION WITH THE SPECIFICATION FOR HIGHWAY WORKS AND THE TURBINE MANUFACTURERS STANDARDS AND ALL RELEVANT DRAWINGS WITHIN THE PROJECT DESIGN PACKAGE.
- ALL WORKS TO BE EXECUTED IN ACCORDANCE WITH THE DMRB, THE MANUAL OF CONTRACT DOCUMENTS FOR HIGHWAY WORKS, DESIGN MANUAL FOR ROADS AND BRIDGES, AND TRAFFIC SIGNS MANUAL.
- ALL DIMENSIONS ARE IN METERS UNLESS STATED OTHERWISE, ALL LEVELS ARE IN METERS AND RELATE TO ORDNANCE DATUM.
- DO NOT SCALE FROM ANY DRAWING, WORK TO FIGURED DIMENSIONS ONLY. ANY DISCREPANCIES IN DIMENSIONS ARE TO BE REFERRED TO THE DESIGNER BEFORE WORK IS PUT TO HAND.
- ALL WORKS BY THE CONTRACTOR MUST BE CARRIED OUT IS SUCH A WAY THA' ALL REQUIREMENTS UNDER THE HEALTH AND SAFETY AT WORK ACT ARE SATISF
- ALL WORKS ARE TO BE CARRIED OUT IN COMPLIANCE WITH THE REQUIREMENT OF THE STATUTORY AUTHORITIES AND CONSTRUCTION DESIGN MANAGEMENT REGULATIONS.

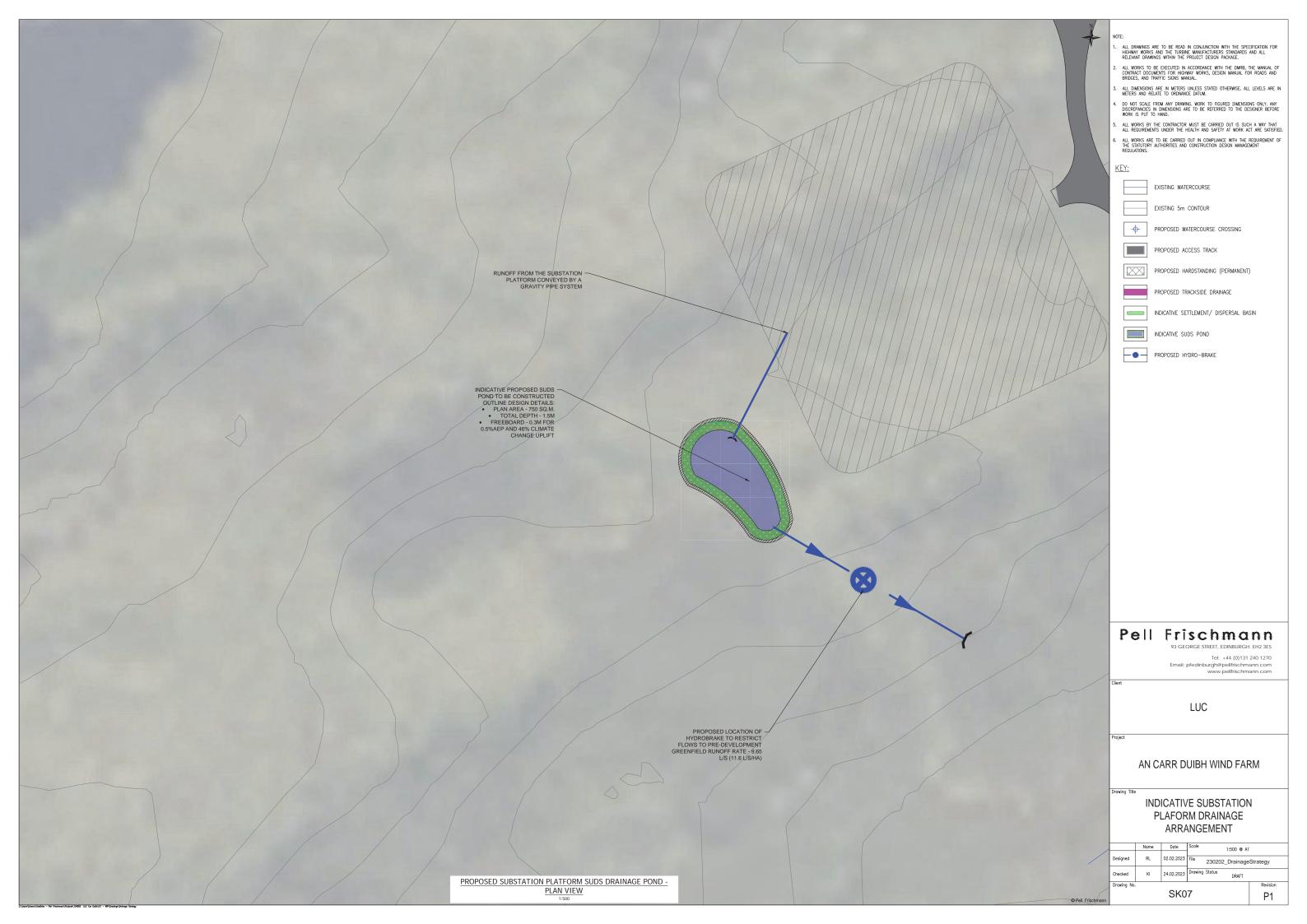
Pell Frischmann

93 GEORGE STREET EDINBLIRGH EH2 3

Tel: +44 (0)131 240 1270 Email: pfedinburgh@pellfrischmann.com www.pellfrischmann.com

Client

LUC


Project

AN CARR DUIBH WIND FARM

Drawing Titl

TYPICAL WATERCOURSE CROSSING DETAILS

	Name	Date	Scale AS SHOWN @	A1	
Designed	RL	02.02.2023	File 230202_Drainage	Strategy	
Checked	кі	09.03.2023	Drawing Status DRAFT		
Drawing No				Revision	
		SK0)6 P		

Outline Drainage Strategy Technical Note

Annexes

Annex D MicroDrainage Attenuation

Pell Frischmann		Page 1
5 Manchester Square		
London		0.0
W1U 3PD		Micco
Date 09/03/2023 16:07	Designed by KIvanov	Designation
File Substation Platform.SRCX	Checked by	Dialilade
Innovyze	Source Control 2020 1	•

Summary of Results for 200 year Return Period (+46%)

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	0.366	0.366	9.7	153.3	O K
30	min	Summer	0.512	0.512	9.7	223.2	O K
60	min	Summer	0.664	0.664	9.7	300.7	O K
120	min	Summer	0.810	0.810	9.7	380.7	O K
180	min	Summer	0.890	0.890	9.7	427.2	O K
240	min	Summer	0.946	0.946	9.7	459.9	O K
360	min	Summer	1.007	1.007	9.7	497.1	O K
480	min	Summer	1.035	1.035	9.7	514.7	O K
600	min	Summer	1.050	1.050	9.7	524.3	O K
720	min	Summer	1.060	1.060	9.7	530.7	O K
960	min	Summer	1.070	1.070	9.7	537.1	O K
1440	min	Summer	1.069	1.069	9.7	536.1	O K
2160	min	Summer	1.039	1.039	9.7	517.3	O K
2880	min	Summer	0.993	0.993	9.7	488.8	O K
4320	min	Summer	0.859	0.859	9.7	408.6	O K
5760	min	Summer	0.718	0.718	9.7	329.8	O K
7200	min	Summer	0.595	0.595	9.7	264.8	O K
8640	min	Summer	0.492	0.492	9.7	213.2	O K
10080	min	Summer	0.408	0.408	9.7	172.9	O K
15	min	Winter	0.407	0.407	9.7	172.3	O K
30	min	Winter	0.568	0.568	9.7	251.1	O K

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	100.516	0.0	156.9	18
30	min	Summer	74.176	0.0	232.6	33
60	min	Summer	51.335	0.0	325.0	62
120	min	Summer	33.993	0.0	430.8	122
180	min	Summer	26.412	0.0	502.2	182
240	min	Summer	22.041	0.0	558.9	242
360	min	Summer	17.010	0.0	647.0	360
480	min	Summer	14.129	0.0	716.6	474
600	min	Summer	12.227	0.0	775.1	524
720	min	Summer	10.862	0.0	826.3	592
960	min	Summer	9.012	0.0	913.7	724
1440	min	Summer	6.917	0.0	1050.7	998
2160	min	Summer	5.293	0.0	1210.6	1428
2880	min	Summer	4.371	0.0	1332.9	1844
4320	min	Summer	3.333	0.0	1524.0	2636
5760	min	Summer	2.750	0.0	1678.7	3352
7200	min	Summer	2.371	0.0	1808.9	4040
8640	min	Summer	2.103	0.0	1924.4	4760
10080	min	Summer	1.901	0.0	2029.2	5448
15	min	Winter	100.516	0.0	176.0	18
30	min	Winter	74.176	0.0	260.8	33

©1982-2020 Innovyze

Pell Frischmann						
5 Manchester Square						
London		- Co.				
W1U 3PD		Micco				
Date 09/03/2023 16:07	Designed by KIvanov	Designation				
File Substation Platform.SRCX	Checked by	Dialilade				
Innovyze	Source Control 2020 1					

Summary of Results for 200 year Return Period (+46%)

	Storm Event			Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
60	min	Winter	0.736	0.736	9.7	339.6	O K
120	min	Winter	0.901	0.901	9.7	433.2	O K
180	min	Winter	0.993	0.993	9.7	488.7	O K
240	min	Winter	1.053	1.053	9.7	526.0	O K
360	min	Winter	1.124	1.124	9.7	571.6	O K
480	min	Winter	1.162	1.162	9.7	596.4	O K
600	min	Winter	1.182	1.182	9.7	609.5	O K
720	min	Winter	1.191	1.191	9.7	615.5	O K
960	min	Winter	1.198	1.198	9.7	620.0	O K
1440	min	Winter	1.186	1.186	9.7	612.5	O K
2160	min	Winter	1.129	1.129	9.7	574.5	O K
2880	min	Winter	1.048	1.048	9.7	522.8	O K
4320	min	Winter	0.811	0.811	9.7	381.2	O K
5760	min	Winter	0.585	0.585	9.7	259.4	O K
7200	min	Winter	0.410	0.410	9.7	174.0	O K
8640	min	Winter	0.293	0.293	9.5	120.7	O K
10080	min	Winter	0.220	0.220	9.0	88.7	O K

	Storm Event			Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
60	min	Winter	51.335	0.0	364.1	62
120	min	Winter	33.993	0.0	482.6	120
180	min	Winter	26.412	0.0	562.5	178
240	min	Winter	22.041	0.0	626.0	236
360	min	Winter	17.010	0.0	724.7	350
480	min	Winter	14.129	0.0	802.6	462
600	min	Winter	12.227	0.0	868.1	570
720	min	Winter	10.862	0.0	925.3	670
960	min	Winter	9.012	0.0	1023.2	762
1440	min	Winter	6.917	0.0	1175.7	1080
2160	min	Winter	5.293	0.0	1356.0	1540
2880	min	Winter	4.371	0.0	1492.9	1992
4320	min	Winter	3.333	0.0	1707.3	2808
5760	min	Winter	2.750	0.0	1880.2	3512
7200	min	Winter	2.371	0.0	2026.1	4112
8640	min	Winter	2.103	0.0	2155.6	4760
10080	min	Winter	1.901	0.0	2273.1	5352

Pell Frischmann			
5 Manchester Square			
London		- Co	
W1U 3PD		Micco	
Date 09/03/2023 16:07	Designed by KIvanov	Designation	
File Substation Platform.SRCX	Checked by	Dialilade	
Innovyze	Source Control 2020.1		

Rainfall Details

Rainfall Model FSR Winter Storms Yes
Return Period (years) 200 Cv (Summer) 0.750
Region Scotland and Ireland Cv (Winter) 0.840
M5-60 (mm) 15.300 Shortest Storm (mins) 15
Ratio R 0.200 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +46

Time Area Diagram

Total Area (ha) 0.848

Time (mins) Area From: To: (ha)

0 4 0.848

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

0 4 0.000

©1982-2020 Innovyze

Pell Frischmann		Page 4
5 Manchester Square		
London		000
W1U 3PD		Micco
Date 09/03/2023 16:07	Designed by KIvanov	Drainage
File Substation Platform.SRCX	Checked by	Diali lacje
Innovyze	Source Control 2020.1	

Model Details

Storage is Online Cover Level (m) 1.500

Tank or Pond Structure

Invert Level (m) 0.000

Depth (m)	Area (m²)						
0.000	380.0	0.500	490.7	1.000	615.6	1.500	754.6

Hydro-Brake® Optimum Outflow Control

Unit Reference	MD-SHE-0137-9800-1500-9800
Design Head (m)	1.500
Design Flow (1/s)	9.8
Flush-Flo™	Calculated
Objective	Minimise upstream storage
Application	Surface
Sump Available	Yes
Diameter (mm)	137
Invert Level (m)	0.000
Minimum Outlet Pipe Diameter (mm)	150
Suggested Manhole Diameter (mm)	1200

Control Points Head (m) Flow (1/s)

Desig	n Poi	int (Calcui	Lated)	1.500	9.
			Flush	n-Flo™	0.441	9.
			Kicl	k-Flo®	0.929	7.
Mean :	Flow	over	Head	Range	-	8.

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flo	w (1/s)	Depth (m) F	low (1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	4.9	1.200	8.8	3.000	13.6	7.000	20.4
0.200	8.8	1.400	9.5	3.500	14.6	7.500	21.1
0.300	9.5	1.600	10.1	4.000	15.6	8.000	21.7
0.400	9.7	1.800	10.7	4.500	16.5	8.500	22.4
0.500	9.7	2.000	11.2	5.000	17.3	9.000	23.0
0.600	9.6	2.200	11.7	5.500	18.1	9.500	23.6
0.800	8.9	2.400	12.2	6.000	18.9		
1.000	8.1	2.600	12.7	6.500	19.7		

Pell Frischmann		Page 1
5 Manchester Square		Ų.
London		- Co
W1U 3PD		Micco
Date 24/02/2023 19:00	Designed by KIvanov	Designation
File Wind turbine 2.SRCX	Checked by	brainage
Innovvze	Source Control 2020.1	•

Summary of Results for 200 year Return Period (+46%)

	Stor: Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	0.058	0.058	2.0	29.2	O K
30	min	Summer	0.081	0.081	3.5	41.5	O K
60	min	Summer	0.103	0.103	5.1	52.8	O K
120	min	Summer	0.120	0.120	6.3	61.6	O K
180	min	Summer	0.129	0.129	6.8	66.3	O K
240	min	Summer	0.134	0.134	7.1	69.0	O K
360	min	Summer	0.138	0.138	7.3	71.2	O K
480	min	Summer	0.138	0.138	7.3	71.3	O K
600	min	Summer	0.137	0.137	7.2	70.5	O K
720	min	Summer	0.134	0.134	7.1	69.3	O K
960	min	Summer	0.129	0.129	6.8	66.4	O K
1440	min	Summer	0.118	0.118	6.2	60.9	O K
2160	min	Summer	0.106	0.106	5.4	54.5	O K
2880	min	Summer	0.098	0.098	4.7	49.9	O K
4320	min	Summer	0.086	0.086	3.9	43.7	O K
5760	min	Summer	0.078	0.078	3.3	39.6	O K
7200	min	Summer	0.072	0.072	2.9	36.8	O K
8640	min	Summer	0.068	0.068	2.6	34.6	O K
10080	min	Summer	0.065	0.065	2.4	32.8	O K
15	min	Winter	0.064	0.064	2.4	32.7	O K
30	min	Winter	0.091	0.091	4.2	46.3	O K

Storm		Rain	${\tt Flooded}$	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	100.516	0.0	26.3	18
30	min	Summer	74.176	0.0	40.4	32
60	min	Summer	51.335	0.0	59.5	60
120	min	Summer	33.993	0.0	79.4	90
180	min	Summer	26.412	0.0	92.8	124
240	min	Summer	22.041	0.0	103.5	158
360	min	Summer	17.010	0.0	120.1	226
480	min	Summer	14.129	0.0	133.2	292
600	min	Summer	12.227	0.0	144.2	356
720	min	Summer	10.862	0.0	153.8	420
960	min	Summer	9.012	0.0	170.1	548
1440	min	Summer	6.917	0.0	195.6	794
2160	min	Summer	5.293	0.0	227.1	1148
2880	min	Summer	4.371	0.0	249.9	1524
4320	min	Summer	3.333	0.0	284.8	2248
5760	min	Summer	2.750	0.0	315.9	2952
7200	min	Summer	2.371	0.0	340.2	3680
8640	min	Summer	2.103	0.0	361.6	4408
10080	min	Summer	1.901	0.0	380.4	5144
15	min	Winter	100.516	0.0	29.8	18
30	min	Winter	74.176	0.0	45.7	32

©1982-2020 Innovyze

Pell Frischmann					
5 Manchester Square					
London		· Co			
W1U 3PD		Micco			
Date 24/02/2023 19:00	Designed by KIvanov	Designation			
File Wind turbine 2.SRCX	Checked by	Dialilage			
Innovvze	Source Control 2020 1				

Summary of Results for 200 year Return Period (+46%)

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
60	min	Winter	0.115	0.115	6.0	59.1	ОК
120	min	Winter	0.133	0.133	7.0	68.6	O K
180	min	Winter	0.141	0.141	7.5	72.9	O K
240	min	Winter	0.144	0.144	7.6	74.8	O K
360	min	Winter	0.145	0.145	7.6	75.0	O K
480	min	Winter	0.142	0.142	7.5	73.3	O K
600	min	Winter	0.137	0.137	7.2	71.0	O K
720	min	Winter	0.133	0.133	7.0	68.5	O K
960	min	Winter	0.124	0.124	6.5	63.7	O K
1440	min	Winter	0.110	0.110	5.6	56.2	O K
2160	min	Winter	0.095	0.095	4.6	48.8	O K
2880	min	Winter	0.086	0.086	3.9	43.9	O K
4320	min	Winter	0.074	0.074	3.0	37.8	O K
5760	min	Winter	0.067	0.067	2.5	34.0	O K
7200	min	Winter	0.062	0.062	2.2	31.3	O K
8640	min	Winter	0.058	0.058	2.0	29.3	O K
10080	min	Winter	0.055	0.055	1.8	27.7	O K

	Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
60	min	Winter	51.335	0.0	66.8	58
120	min	Winter	33.993	0.0	89.2	94
180	min	Winter	26.412	0.0	104.2	132
240	min	Winter	22.041	0.0	116.2	170
360	min	Winter	17.010	0.0	134.8	242
480	min	Winter	14.129	0.0	149.4	310
600	min	Winter	12.227	0.0	161.7	376
720	min	Winter	10.862	0.0	172.5	442
960	min	Winter	9.012	0.0	190.9	568
1440	min	Winter	6.917	0.0	219.5	810
2160	min	Winter	5.293	0.0	254.5	1188
2880	min	Winter	4.371	0.0	280.1	1532
4320	min	Winter	3.333	0.0	319.4	2252
5760	min	Winter	2.750	0.0	353.9	3000
7200	min	Winter	2.371	0.0	381.2	3744
8640	min	Winter	2.103	0.0	405.2	4488
0800	min	Winter	1.901	0.0	426.5	5152

Pell Frischmann	Page 3	
5 Manchester Square		
London		- L
W1U 3PD		Micco
Date 24/02/2023 19:00	Designed by KIvanov	Designation
File Wind turbine 2.SRCX	Checked by	Dialilade
Innovyze	Source Control 2020.1	

Rainfall Details

Return Period (years) 200 Cv (Summer) 0.750
Region Scotland and Ireland Cv (Winter) 0.840
M5-60 (mm) 15.300 Shortest Storm (mins) 15
Ratio R 0.200 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +46

Time Area Diagram

Total Area (ha) 0.160

Time (mins) Area From: To: (ha)

0 4 0.160

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

0 4 0.000

©1982-2020 Innovyze

Pell Frischmann		Page 4
5 Manchester Square		2
London		* Co
W1U 3PD		Micco
Date 24/02/2023 19:00	Designed by KIvanov	Designation
File Wind turbine 2.SRCX	Checked by	Dialilade
Innovyze	Source Control 2020.1	

Model Details

Storage is Online Cover Level (m) 1.500

Tank or Pond Structure

Invert Level (m) 0.000

Depth (m) Area	(m²)	Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)
0.0	00	500.0	0.	500	(526.0	1.	.000	7	766.1	1.	500	9	920.3

Hydro-Brake® Optimum Outflow Control

MD-SHE-0136-9700-1500-970	e l	Jnit Refer	J		
1.50	1)	esign Head	De		
9.)	ign Flow (Desi		
Calculate	TM	Flush-			
Minimise upstream storag	e	Objec			
Surfac	n	Applica			
Ye	e	Sump Avail	S		
13	1)	Diameter			
0.00	1)	vert Level	Inv		
15	1)	Diameter	Pipe	Outlet	nimum
120	1)	Diameter	nhole	sted Ma	Sugges

Control Points Head (m) Flow (1/s)

Design	Poi	int (Calcul	Lated)	1.500	9.
			Flush	n-Flo™	0.441	9.
			Kicl	c-Flo®	0.933	7.
Mean F	low	over	Head	Range	_	8.

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Fl	ow (1/s)	Depth (m)	Flow (1/s)	Depth (m) Flo	w (1/s)	Depth (m)	Flow (1/s)
0.100	4.9	1.200	8.7	3.000	13.5	7.000	20.2
0.200	8.7	1.400	9.4	3.500	14.5	7.500	20.8
0.300	9.4	1.600	10.0	4.000	15.4	8.000	21.5
0.400	9.7	1.800	10.6	4.500	16.3	8.500	22.1
0.500	9.7	2.000	11.1	5.000	17.2	9.000	22.8
0.600	9.5	2.200	11.6	5.500	18.0	9.500	23.4
0.800	8.9	2.400	12.1	6.000	18.7		
1.000	8.0	2.600	12.6	6.500	19.5		