

BAILLIE GREENER GRID PARK

DRAINAGE IMPACT ASSESSMENT

STATKRAFT UK LIMITED

NOVEMBER 2021

Prepared by Arcus Consultancy Services

7th Floor 144 West George Street Glasgow G2 2HG

T +44 (0)1904 715 470 l E info@arcusconsulting.co.uk w www.arcusconsulting.co.uk

Registered in England & Wales No. 5644976

TABLE OF CONTENTS

1	INTRO	DUCTION2
	1.1	Background2
	1.2	Site Context
	1.3	Development Infrastructure
2	SURFA	CE WATER DISCHARGE RATES
	2.1	Surface Water Discharge Options
	2.2	Greenfield Run-off Rates4
	2.3	Return Period and Climate Change Allowance4
	2.4	Discharge to Watercourse
3	SURFA	CE WATER DRAINAGE DESIGN
	3.1	Proposed Surface Water Drainage Scheme5
	3.2	Exceedance Design
	3.3	Water Quality6
	3.4	Construction Phase7
4	FOUL	WATER DRAINAGE
5	LONG	TERM MANAGEMENT AND TIMESCALES8
	5.1	Long Term Management8
	5.2	Timescales
6	СОМР	LIANCE
7	CONC	LUSION
APPEN	IDIX A	– SITE LAYOUT
APPEN	IDIX B	– INFILTRATION TESTING TECHNICAL NOTE9
APPEN	IDIX C	– ICP RURAL RUNOFF RATES10
APPEN	IDIX D	– OUTLINE DRAINAGE LAYOUT11
APPEN	IDIX E	- MICRODRAINAGE MODEL OUTPUTS12
APPEN	IDIX F	- POND MAINTENANCE SCHEDULE13
APPEN	IDIX G	- HIGHLAND COUNCIL ASSESSMENT COMPLIANCE CERTIFICATION

Document Control

	Date	Version	Role		Print Name	Signature
Author	29/09/2021	1-0	Senior Hydrologist (Arcus)	BA hons MCIWEM	Reagan Duff	Rauff
Check & Review	30/09/2021	1-0	Operational Director (Arcus)	BSc hons, Registered EIA Practitioner	Stuart Davidson	D

Revisions

	Date	Version	Role		Print Name	Signature
Author	30/09/2021	1-1	Senior Hydrologist (Arcus)	BA hons MCIWEM	Reagan Duff	Rauff
Issued	30/09/2021	1-1	Senior Planning Consultant (Arcus)	MA MSc MRTPI	Martin Gillespie	Mar lander
Author	19/11/2021	2-0	Senior Hydrologist (Arcus)	BA hons MCIWEM	Reagan Duff	Rauff
Issued	19/11/2021	2-0	Senior Planning Consultant (Arcus)	MA MSc MRTPI	Martin Gillespie	Mark lather

INTRODUCTION 1

1.1 Background

This Drainage Impact Assessment ('DIA') has been produced in support of a planning application for the construction of a Greener Grid Park ('the Development') on land within the existing Baillie Wind Farm, southwest of Thurso ('the Site').

The DIA has been prepared by Arcus Consultancy Services Ltd ('Arcus'), on behalf of Statkraft UK LTD ('the Applicant') to satisfy the following requirements:

- Scottish Government, Planning Advice Note 61: Planning and Sustainable Urban Drainage Systems¹;
- Scottish Government, Planning Advice Note 79: Planning Advice Note 79: Water and • Drainage²;
- Scottish Environmental Protection Agency (SEPA), Technical Flood Risk Guidance for Stakeholders³;
- Scottish Water, Sewers for Scotland 4th Edition4;
- CIRIA, The SuDS Manual (C753)5; •
- Highland Council ('HC'), Sustainable Design Guide⁶; and
- HC, Flood Risk and Drainage Impact Supplementary Guidance⁷.

The Site Layout Plan can be found in Appendix A of this report.

1.2 **Site Context**

The Site comprises an area of approximately 1.99 hectares (ha) and is located approximately 1 kilometre (km) northeast of Shebster, 3.6 km southeast of Lower Dounreay and 8.6 km southwest of Thurso, centred on National Grid Reference (NGR) of E 302340, N 965060 as shown in Appendix A.

The Site is greenfield within the consented planning application boundary for an existing, operational wind farm.

Ordnance Survey (OS) Terrain 5 data indicates Site elevations are in the range of 101 to 109 metres (m) Above Ordnance Datum ('AOD'), with site topography falling from a high point in the north west to a low point in the south.

Infiltration testing has been carried out at the Site by Blake Geoservices Ltd in August 2021. The test pits indicated that underlying strata comprises rockhead to 1.1m below ground level (bql), underlain by clay and gravel based sands and siltstone, with some boulders encountered. The infiltration testing technical note and logs can be found in Appendix B.

https://www.ciria.org/AsiCommon/Controls/BSA/Downloader.aspx (Accessed 30/09/2021)

https://www.highland.gov.uk/download/downloads/id/3019/highland_council_sustainable_design_guide.pdf (Accessed 30/09/2021)

¹ Scottish Government, Planning Advice Note 61: Planning and Sustainable Urban Drainage Systems (2001). [Online]. Available at: https://www.gov.scot/publications/pan-61-sustainable-urban-drainage-systems/ (Accessed 30/09/2021)

² Scottish Government, Planning Advice note 79: Water and Drainage (2006). [Online]. Available at: https://www.gov.scot/publications/planning-advice-note-pan-79-water-drainage/ (Accessed 30/09/2021) ³ SEPA, Technical Flood Risk Guidance for Stakeholders (2019). [Online]. Available at:

https://www.sepa.org.uk/environment/land/planning/guidance-and-advice-notes/ (Accessed 30/09/2021) ⁴ Scottish Water, Sewers for Scotland (2018). [Online]. Available at: <u>https://www.scottishwater.co.uk/-</u> /media/ScottishWater/Document-Hub/Business-and-Developers/Connecting-to-our-network/All-connectionsinformation/SewersForScotlandv4.pdf (Accessed 30/09/2021) ⁵ CIRIA, The SuDS Manual (C753) (2015). [Online]. Available at:

⁶ Highland Council, Sustainable Design Guide (2013). [Online]. Available at:

⁷Highland Council, Flood Risk and Drainage Impact supplementary Guidance (2013). [Online]. Available at: https://www.highland.gov.uk/downloads/file/2954/flood risk and drainage impact assessment supplementary guidance (Accessed 30/09/2021)

1.3 Development Infrastructure

The Site Layout (as shown in Appendix A) will create a total impermeable area of 0.503 ha; detailed further in Table 1.

The proposed access tracks will comprise of permeable materials (e.g., Type 2 aggregate) and will be free draining and are therefore excluded from the total impermeable areas.

Hardstanding Infrastructure	Total Area of Hardstanding (m ²)
60 no. battery units (each 12.9m x 2.44m x 2.59m)	1857.6
2 no. synchronous compensators building (each 38.6 x 20.7m x 10.0m envelope)	1598
2 no. water cooler pump skid (each 6.35m x 2.05m x 2.6m)	26
6 no. switchgear containers (each 12.2m x 2.44m 3.0m)	178.6
6 no. inverter units (6.1m x 2.44m x 2.59m)	89.3
1 no. welfare facility (12.9m x 3.45m x 2.59m)	44.5
1 no. SHETL distribution container (12.19m x $3.45m x$ 2.59m)	44.5
1 no. Statkraft distribution container (12.19m x 3.45m x 2.59m)	44.5
2 no. synchronous compensator HV control and protection (each 12.19m x 3.45m x 2.59m)	89
2 no. LV electrical house (each 12.19m x 3.45m x 2.59m)	89
1 no. synchronous compensator comms house (12.19m x 2.44m x 2.59m)	29.7
1 no. BESS Comms House (12.19m x 2.44m x 2.59m)	29.7
1 no 275kV AIS & transformer (36.8m x 18.6m x 7.05m)	684.5
2 no. 2500kVA 690V transformers (each 4.0m x 4.0m x 2.9m)	16
6 no. 1000kVA 400V BoP auxiliary transformers (each 3.0m x 3.0m x 2.14m	54
2 no. lube oil pump skid (each 2.15 x 1.1m x 1.1m)	4.7
6 no. air blast coolers (each 9.6m x 2.4m x 2.5m)	138.2
1 no. backup diesel generator (5.1m x 2.07m x 1.6m)	10.6
Total Hardstanding (m²):	5028.4
Total Hardstanding (ha):	0.503

Table 1: Proposed Impermeable Areas

2 SURFACE WATER DISCHARGE RATES

2.1 Surface Water Discharge Options

In accordance with the SuDS Manual and Sewers for Scotland, an evaluation has been undertaken to determine the most appropriate option to dispose of surface water from the Development.

The Development will be predominantly unoccupied with ad hoc maintenance visits and will therefore have no demand for water reuse onsite.

Infiltration testing has been carried out at the Site in August 2021, with two test pits excavated as detailed in Appendix B. The infiltration test results outline that the underlying strata comprises 'clayey' to 'very clayey' strata underlain by rockhead prohibitive infiltration and as such soakaways at the Site will not be feasible.

Managed discharge to a watercourse will be the most appropriate option to dispose of surface water from the Development accordance with the SuDS Manual and Sewers for Scotland, with information within Table 2 summarising the appropriate discharge method along with rationale.

Disposal route	Feasible?	Reason
Re-use onsite	×	Site will be unmanned with infrequent maintenance visits, therefore no demand for water re-use.
Infiltrate to ground	×	Infiltration testing has been carried out at the Site with no positive infiltration rate obtained, as shown in Appendix B.
Discharge to watercourse	~	In accordance with the drainage hierarchy surface water will be discharged to a nearby watercourse.
Discharge to surface water sewer	×	Surface water to discharge into nearby watercourse.
Discharge to combined sewer	×	Surface water to discharge into nearby watercourse.

 Table 2: Surface Water Discharge Methods

2.2 Greenfield Run-off Rates

Greenfield runoff rates for the 0.503 ha of impermeable area, outlined in Table 1 and shown in Appendix A, have been calculated using the Interim Code of Practice for SuDS (ICP SuDS) method⁸ via Micro Drainage Software with rates shown in Table 3 and Appendix C.

The application of this approach leads to the runoff from the Site to be attenuated and discharged to the greenfield runoff rate of 4 l/s in up to the 200-year return period, with appropriate climate change allowances.

Table 3: Site Runoff Flow Rates (taken from Micro Drainage)

Return Period	Q (l/s)
Q _{BAR}	4.0
1	3.4
30	7.5
100	9.8
200	11.1

2.3 Return Period and Climate Change Allowance

In accordance with Map 1 of SEPA's climate change allowances⁹ a 35 % allowance has been incorporated into the drainage design ('+35 % CC').

In accordance with Paragraph 2.7.1.4 of the Suds Manual and Sewers for Scotland 4th Edition, any on site storage attenuation features will be assessed with flooding and

 ⁸ National SuDS Working Group, Interim Code of Practice for Sustainable Drainage Systems (2004). [Online]. Available at: https://www.susdrain.org/files/resources/other-guidance/nswg_icop for suds 0704.pdf (Accessed 30/09/2021)
 ⁹ SEPA, Climate Change Allowances for Flood Risk Assessment in Land Use Planning (2019). [Online]. Available at: https://www.sepa.org.uk/media/426913/lups_cc1.pdf (Accessed 30/09/2021)

surcharging prevented in up to a 1:30 (+35 % CC) year event and flooding prevented in up to a 1:200-year (+35 % CC) event.

In accordance with Paragraph 2.6.1 and 2.6.8 of the SuDS Manual and Sewers for Scotland 4^{th} Edition and acknowledging the electrically sensitive nature of the onsite infrastructure, it is required that the Site is assessed in up the 1:200-year (+35% CC) return period runoff volumes.

2.4 Discharge to Watercourse

As detailed in Section 2.1 the SuDS hierarchy has been consulted, with discharge to a nearby watercourse deemed the practicable form of drainage at the Site.

OS mapping indicates there is an open land drain located approximately 80 m south of the Site, which is approximately 600 m in length before culverting beneath an access track associated with the existing Wind Farm. The open land drain discharges into Shebster Burn approximately 700 m downstream of the Site, which ultimately discharges into Forss Water.

The UK CEH (FEH) web map¹⁰ indicates that the watercourse is served by a catchment of 0.87 km^2 , as shown in Plate 1.

Plate 1: Receiving Watercourse Catchment Extents

3 SURFACE WATER DRAINAGE DESIGN

The measures outlined in the following Sections will be implemented by the Applicant's Contractor to ensure that greenfield runoff rates are maintained during the construction and operational phases of the Development. Should the drainage measures or locations differ to what is outlined within this document, then the final detailed drainage design will be provided by the Contractor, and submitted to the Council, prior to construction.

3.1 **Proposed Surface Water Drainage Scheme**

The impermeable areas within the Development will be connected to a attenuation pond to the south of the Site via a piped filter drain system, as shown in Appendix D. The pond will enable surface water to be intercepted in accordance with existing topography and flow routes from north to south.

¹⁰ UK Centre for Ecology and Hydrology, Flood Estimation Handbook. [Online]. Available at: <u>https://fehweb.ceh.ac.uk/GB/map</u> (Accessed 30/09/2021)

The outfall to the open land drain is located within the extents of the existing land ownership and no third party access agreements are required for the route to the discharge point.

The outflow of the pond to the nearest watercourse will be controlled by a Hydro-Brake (or other flow control device) and discharge to the watercourse to the south at 4 l/s.

In order to provide the Site with suitable attenuation of surface water in relation to the storage structure requirements (see Section 2.3) and acknowledging the nature of the Development, the pond will comprise of the approximate dimensions in accordance with the SuDS Manual:

- Base area: 212 m²;
- Total area: 469 m²;
- Depth: 1.0 m; and
- Side slope: 1 in 4.

The 'worst-case' scenario event in up to a 1:200-year (+35 % CC) event is shown in Plate 3, with the designed pond able to attenuate surface water flows without surcharge.

Details of critical events by return period can be found in Appendix E.

Plate 2: Network 1:200-Year (+CC) Critical Storm Event (Taken from Micro Drainage)

Storm Event	Rain (mm/ħr)	Time to Vol Peak (mins)	Max Water Level (m)				Discharge Volume (m ²)			Status
720 min Winter	9.298	686	100.999	0.999	0.0	4.0	469.7	4.0	331.4	Flood Risk

The designed pond has a drain down time of less than 48 hours in accordance with Section 6.23 of the HC Flood Risk and Drainage Impact Supplementary Guidance.

In accordance with Section 6.24 of the HC Flood Risk and Drainage Impact Supplementary Guidance long sections and cross sections of the proposed pond are shown in Appendix E.

A layout plan of the proposed surface water network can be found in Appendix D.

3.2 Exceedance Design

Section 6.20 of the HC Flood Risk and Drainage Impact Supplementary Guidance requires that surface water is contained within the Site for the 1:200-year event and exceedance routes are assessed.

As detailed in Section 3.1 the proposed pond will attenuate surface water for the 1:200year (+35%) event with no overtopping and therefore will not result in exceedance flows and surface water will be managed onsite.

3.3 Water Quality

The Development will involve the construction and operation of a Greener Grid Park involving less than 300 traffic movements per day. Table 26.2 *Pollution hazard indices for different land use classifications* of the SuDS Manual identifies that the Development has a Pollution Hazard Level of Low, taken from the 'Low Traffic Roads e.g. residential roads and general access roads, < 300 traffic movements/day' scenario.

Table 5 outlines that the Development includes land uses which have the following Simple Index Approach (SIA) indices.

 Table 5: Pollution Hazard Indices for Land Use Classifications

Land use		Total Suspended Solids (TSS)	Metals	Hydrocarbons	
----------	--	------------------------------------	--------	--------------	--

Individual property driveways, residential car parks, low traffic roads (e.g. cul de sacs, home zones and general access roads) and non- residential car parking with infrequent change (e.g. schools, offices) i.e. < 300 traffic movements/day	Low	0.5	0.4	0.4

A SIA has been developed on behalf of the Construction Industry Research and Information Association (CIRIA) to support the implementation of the water quality management design methods set out in the SuDS Manual, with appropriate cross referencing to the relevant 'Design Conditions' in the tool.

The Development has been categorised as 'Commercial/Industrial roofing: Low potential for metal leaching' within the SIA tool.

The permeable / porous roads will be sufficient to effectively mitigate any suspended solids, metals and hydrocarbons held within surface water at the Development prior to discharging into the receiving watercourse under expected conditions i.e. in the absence of large hydrocarbon spills.

The SIA outputs appended to this report, and as shown in Table 4, demonstrate that the combined Pollution Mitigation Indices for the run-off area are met by the installation of a pond.

	Total Suspended Solids	Metals	Hydrocarbons		
Pollution Hazard Indices	0.5	0.4	0.5		
Pond or Wetland	0.7	0.7	0.5		

Table 4: SIA outputs for Low Pollution Hazard Level scenario

The outputs of the SIA tool indicate that the SuDS network has the required treatment potential in relation to the potential pollution hazard of the Development in the absence of significant spillages of hydrocarbons or other pollutants.

3.4 Construction Phase

The nature of hydrological incidents that could result from construction activities will be mitigated through the implementation of construction phase SuDS and the application of industry good practice as per CIRIA Guidance (C741)11.

To prevent any sediment increase in associated runoff during the construction phase SuDS measures (e.g. spill kits, bunds, drip trays, plant nappies, designated refuelling points, emergency response plans) will effectively prevent sediment entering surrounding watercourses.

The implementation of such construction phase SuDS is to be confirmed with the Council prior to the construction phase.

¹¹ The Construction Industry Research and information Association (CIRIA), (2015), Environmental Good Practice on Site Guide (C741), CIRIA: London.

4 FOUL WATER DRAINAGE

The Development will be unmanned throughout the operational phase, excluding ad hoc maintenance visits, and will therefore not require a main connected foul water drainage solution.

The onsite welfare facility will have 'porta-loo' facilities which will comprise of waste being stored, managed and carried offsite by a licensed waste management courier.

During the construction phase a temporary a 'porta-loo' facility will be onsite, with waste being stored, managed and carried offsite by a licensed waste management courier.

5 LONG TERM MANAGEMENT AND TIMESCALES

5.1 Long Term Management

It will be the responsibility of the Applicant's Contractor to maintain effective drainage measures and rectify drainage measures that are not functioning adequately. This will be reviewed throughout construction and post-construction. The Contractor will also have responsibility for reporting on the functionality of drainage measures during regular Safety, Health and Environmental Quality meetings.

Where hardstanding areas will remain through the lifetime of the Development, the SuDS measures serving these areas will also remain in place and will be checked on a regular basis by visiting maintenance staff who will follow the proposed management and maintenance programme. Should drainage measures require dredging or unblocking, this will be undertaken as soon as practicable by a local contractor.

Appendix F outlines the management and maintenance programmes for the pond.

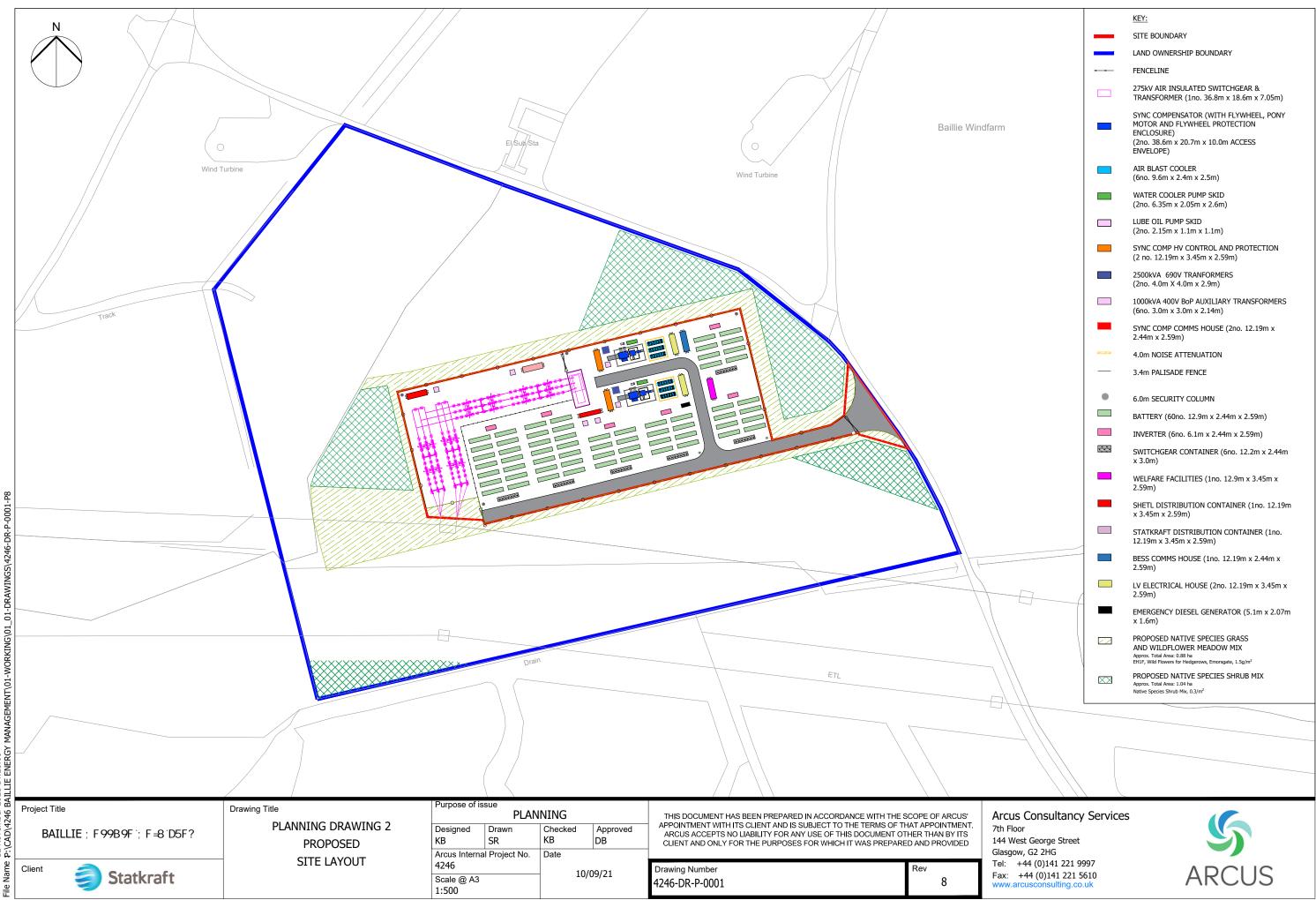
5.2 Timescales

Drainage measures outlined within this report should be implemented as soon as practical by the Applicant's Contractor but as a minimum before the construction of any impermeable surfaces which are proposed to drain into the approved drainage system.

Measures such as drainage pipes should be installed at the same time as the excavations, or as soon as practicable thereafter.

6 COMPLIANCE

In accordance with Section 7.3 of the HC Flood Risk and Drainage Impact Supplementary Guidance the HC Compliance Certificate has been completed and is available in Appendix G.


7 CONCLUSION

This report provides details on the volume of storage required to attenuate surface water runoff from the construction of the Development.

The proposed pond and associated piped network detailed within this report are shown to not surcharge during a 1:200-year (+35 % CC) event and discharge to the nearest watercourse at a 4 l/s.

APPENDIX A – SITE LAYOUT

Reproduced from Ordnance Survey digital map data © Crown copyright 2018. All rights reserved. License number 100048606

APPENDIX B – INFILTRATION TESTING TECHNICAL NOTE

TRIAL PIT LOG

Project									TF	RIAL PIT No
	Baillie Windfarm, Shebster, Caithness									1
Job No		Date		Ground Level (1	m) C	o-Ordinates ()				•
21124	4-01	30-08	-21						C1	
Contractor	C	· · · · T / J · · · · ·		· · · · · · · · · · · · · · · · · · ·	1-				Sheet	
Blak		ices Ltd - ww		geoservices.co						1 of 1
0	A		В		С		D	0	Ē	Legend
								_	1/	x - 24 1/2 - 24 1/2 - 24 1/2
								_		<u>N ly</u> <u>N ly</u> <u>N</u>
_								_	<i>!;</i>	$\frac{\sqrt{1}}{9} \frac{\sqrt{1}}{\sqrt{1}} \frac{\sqrt{1}}{\sqrt{1}}$
								_	ž	
_								_	-{	
									.<	
1-								-1	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	
_								_	5	× × × × × × × × × × × × × × × × × × ×
								Ē		
_								-		
_								_		
								-		
			ST	TRATA				SAN	1PLE	S & TESTS
1	No			DESCRI	PTION			Depth	No	Remarks/Tests
0.00-0.40		TOPSOIL and grey mottle	ed. clavev. v	very gravelly. SA	ND with fre	quent angular, fla	at, cobbles of			
	brown	siltstone, grave	l is medium,	very gravelly, SA , flat, angular of s	siltstone, san	d is fine.				
0.90-1.10	Grey w	eathered brown	ı, fissile, SII	LTSTONE.						
_										
Shoring/Su	ipport: N/	A A								ENERAL
Stability: S	Stability: Stable to base REMARKS									
1-	Borehole terminated upon competent rockhead. No groundwater ingress noted.									
	— 0.50 — A							gr	oundw	ater ingress noted.
D		B 1.50								
		В 1.50								
	С									
All dimensi	ons in metre e 1:25	es Client M	ason Evar	ns	Method/ Plant Used	2.5t Track	ed 360	L	ogged	By CLB
	- 1.20					2.5t 1100K				

TRIAL PIT LOG

Project									TR	IAL PIT No
	Baillie Windfarm, Shebster, Caithness									2
Job No		Date		Ground Level (m)	Co	-Ordinates ()				L
21124-0	01	30-08	-21						Sheet	
Contractor										
Віаке	Blake Geoservices Ltd - www.blake-geoservices.co.uk -									1 of 1
	<u>A</u>		B		С		D		1	Legend
			ST	TRATA					1PLE	S & TESTS
Depth No		OPSOIL		DESCRIPTI	ION			Depth	No	Remarks/Tests
0.40-0.90	Grey, cla	ayey, very gra	velly, SANI	very gravelly, SAND is medium, flat, ang D with occasional an mudstone, sand is fir	gular, flat					
1.10-1.20		sile, MUDST								
Shoring/Sup Stability: Sta D All dimension Scale 1	Shoring/Support: N/A Stability: Stable to base									
All dimension Scale 1		Client M	ason Evar	ns Me Pla	ethod/ ant Used	2.5t Track	ed 360		ogged I	^{By} CLB

Geotechnical Results

Infiltration Test with guidance from BRE Special Digest 365*

Site	Baillie Windfarm, Shebster, Caithness
Date	30/08/2021
Location	TP1

Length (m)	1.50	Width (m)	0.50
Depth (m)	1.10	Pit filled to	0.60
		(mbgl)	

Level	Time (min)
(mbgl)	
0.60	0
	0.5
	1
	1.5
	2
	3
	4
	5
	6
	7
	8
	9
0.60	10
	15
0.60	20
	25

Level	Time (min)
(mbgl)	
0.60	30
	40
	50
0.60	60
	80
0.60	90
0.60	120
	140
0.60	150
	180
Abandoned - no fall	210
	240
	270
	300

Calculated "f" value (m/s): $<1.0 \times 10^{-8}$

Note:

* These tests were undertaken with guidance from BRE Digest 365 as far as practically possible to allow an indication of f values to be considered for design purposes, often site conditions or safety measures prevent the full guidance of said document to be strictly followed. No pits are left open overnight with water or otherwise. Excavation to depth often proves difficult, as does complete discharge.

Geotechnical Results

Infiltration Test with guidance from BRE Special Digest 365*

Site	Baillie Windfarm, Shebster, Caithness
Date	30/08/2021
Location	TP2

Length (m)	1.50	Width (m)	0.50
Depth (m)	1.20	Pit filled to	0.70
		(mbgl)	

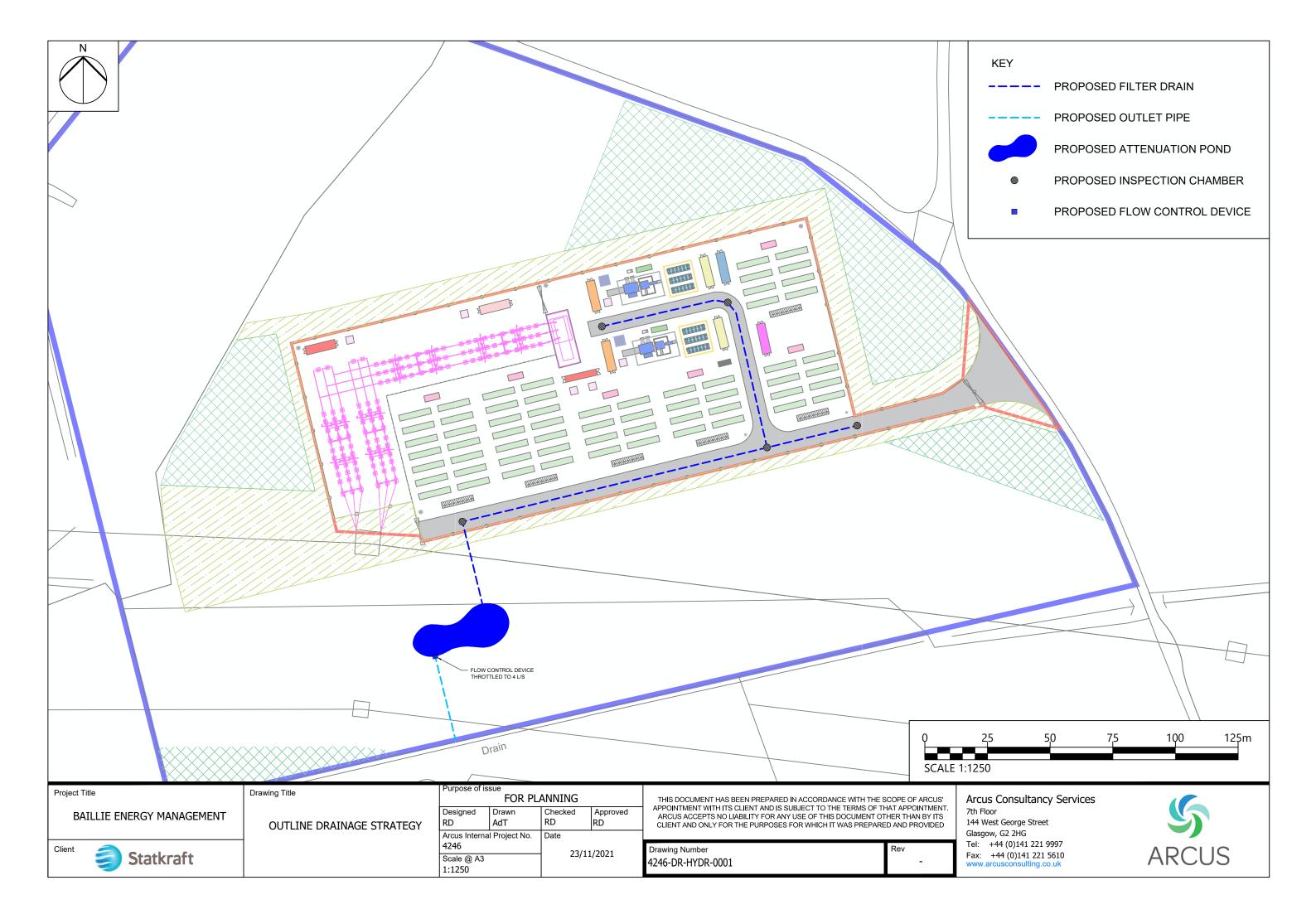
Level	Time (min)
(mbgl)	
0.70	0
	0.5
	1
	1.5
	2
	3
	4
	5
	6
	7
	8
	9
0.70	10
	15
0.70	20
	25

Level	Time (min)
(mbgl)	
0.70	30
	40
	50
0.70	60
	80
0.70	90
0.70	120
	140
0.70	150
	180
Abandoned - no fall	210
	240
	270
	300

Calculated "f" value (m/s): $<1.0 \times 10^{-8}$

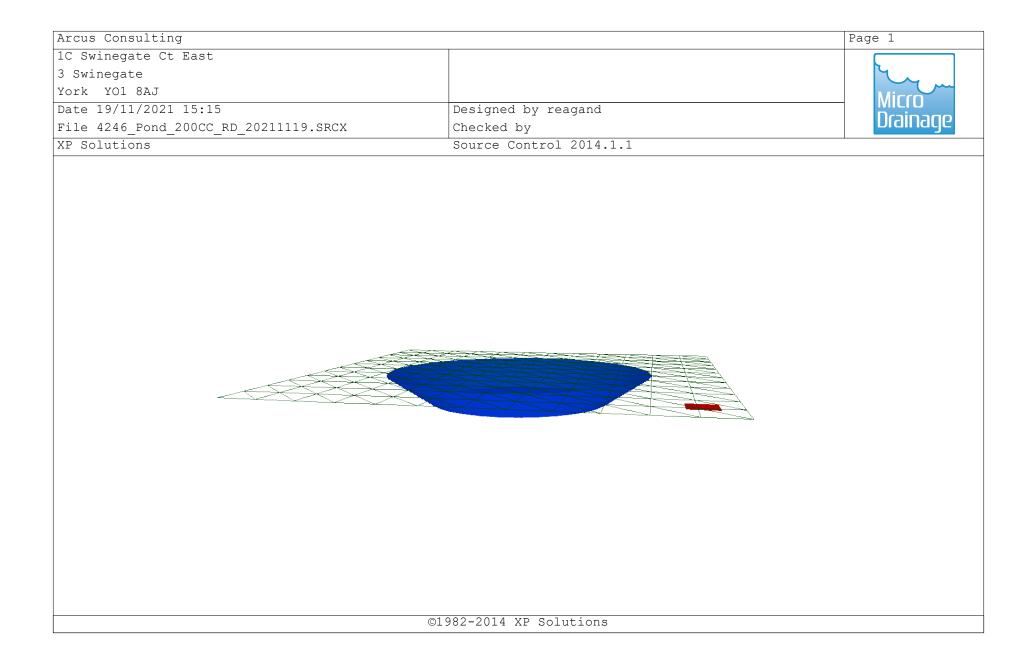
Note:

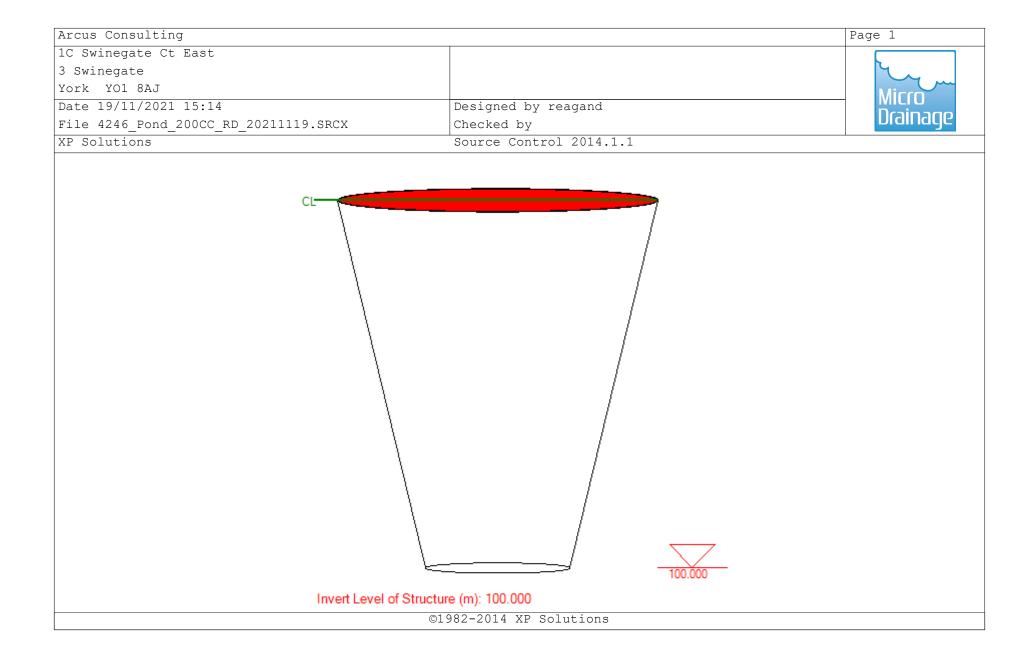
* These tests were undertaken with guidance from BRE Digest 365 as far as practically possible to allow an indication of f values to be considered for design purposes, often site conditions or safety measures prevent the full guidance of said document to be strictly followed. No pits are left open overnight with water or otherwise. Excavation to depth often proves difficult, as does complete discharge.



APPENDIX C – ICP RURAL RUNOFF RATES

Arcus Consulting		Page 1
1C Swinegate Ct East		
3 Swinegate		L'
York YO1 8AJ		Micco
Date 19/11/2021 13:52	Designed by reagand	
File 4246_Swale_200CC_RD_202	Checked by	Drainage
XP Solutions	Source Control 2014.1.1	
ICP SUDS	<u> Mean Annual Flood</u>	
	Input	
Area (h	rs) 200 Soil 0.500 ha) 0.503 Urban 0.000 mm) 949 Region Number Region 1	
	Results 1/s	
	BAR Rural 4.0 BAR Urban 4.0	
Q	200 years 11.1	
	Q1 year 3.4 Q30 years 7.5 100 years 9.8	




APPENDIX D – OUTLINE DRAINAGE LAYOUT

APPENDIX E – MICRODRAINAGE MODEL OUTPUTS

1	ting						Page 1
1C Swinegate	Ct East						
3 Swinegate							1 L
York YO1 8A3	J						Micco
Date 19/11/20	021 15 : 20	Ι	Designe	d by re	eagand		- MICrO
File 4246 Por	nd 200CC RD 2021		Checked	l by			Drainage
XP Solutions			Source	Contro	L 2014.	1.1	
<u><u>c</u></u>	Summary of Resul	ts for	r 200 y	vear Re	turn Pe	riod (+35%)	_
	Storm	Max	Max	Max	Max	Status	
	Event	Level (m)	L Deptn (m)	Control (1/s)	. Volume (m ³)		
		(111)	(111)	(1/3)	(
	15 min Summer				114.3		
	30 min Summer				142.2		
	60 min Summer) 175.2	O K	
	120 min Summer 180 min Summer					Flood Risk Flood Risk	
	240 min Summer					Flood Risk Flood Risk	
	360 min Summer					Flood Risk	
	480 min Summer	100.87	0.877	4.0		Flood Risk	
	600 min Summer					Flood Risk	
	720 min Summer	100.89	94 0.894	4.0	284.1	Flood Risk	
	960 min Summer					Flood Risk	
	1440 min Summer					Flood Risk	
	2160 min Summer					Flood Risk	
	2880 min Summer					Flood Risk	
	4320 min Summer 5760 min Summer) 199.1		
	7200 min Summer				147.4 108.0		
	8640 min Summer				79.6		
	10080 min Summer				59.4		
	15 min Winter	100.48	33 0.483	4.0	128.5	O K	
	30 min Winter				160.1	O K	
	Storm	Ra	in Flo	oded Dis	charge '	Fime-Peak	
		(hr) Vo	_		(mins)	
	Event	(11111)		lume V	olume	(
	Event	(11111/	(1		olume (m³)	(
				n³)	(m³)		
	Event 15 min Summe 30 min Summe	er 125.	.761	n³) 0.0	(m³) 117.3	26 40	
	15 min Summe	er 125. er 78.	.761 .888	n³)	(m³)	26	
	15 min Summe 30 min Summe	er 125. er 78. er 49.	.761 .888 .485	n³) 0.0 0.0	(m ³) 117.3 147.3	26 40	
	15 min Summe 30 min Summe 60 min Summe	er 125. er 78. er 49. er 31.	.761 .888 .485 .042	n ³) 0.0 0.0 0.0	(m ³) 117.3 147.3 186.1	26 40 70	
	15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe	er 125. er 78. er 49. er 31. er 23. er 19.	.761 .888 .485 .042 .630 .472	n ³) 0.0 0.0 0.0 0.0 0.0 0.0	(m ³) 117.3 147.3 186.1 233.5 266.7 293.0	26 40 70 128 186 246	
	15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe 360 min Summe	er 125. er 78. er 49. er 31. er 23. er 19. er 14.	.761 .888 .485 .042 .630 .472 .823	n ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(m ³) 117.3 147.3 186.1 233.5 266.7 293.0 334.5	26 40 70 128 186 246 364	
	15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe 360 min Summe	er 125. er 78. er 49. er 31. er 23. er 19. er 14. er 12.	.761 .888 .485 .042 .630 .472 .823 .214	n ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(m ³) 117.3 147.3 186.1 233.5 266.7 293.0 334.5 367.5	26 40 70 128 186 246 364 482	
	15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 360 min Summe 480 min Summe	er 125. er 78. er 49. er 31. er 23. er 19. er 14. er 12. er 10.	.761 .888 .485 .042 .630 .472 .823 .214 .512	n ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 117.3 147.3 186.1 233.5 266.7 293.0 334.5 367.5 395.3	26 40 70 128 186 246 364 482 578	
	15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 360 min Summe 480 min Summe 600 min Summe	er 125. er 78. er 49. er 31. er 23. er 19. er 14. er 12. er 10. er 9.	.761 .888 .485 .042 .630 .472 .823 .214 .512 .298	n ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 117.3 147.3 186.1 233.5 266.7 293.0 334.5 367.5 395.3 419.5	26 40 70 128 186 246 364 482 578 628	
	15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 360 min Summe 480 min Summe	er 125. er 78. er 49. er 31. er 23. er 19. er 14. er 12. er 10. er 9. er 7.	.761 .888 .485 .042 .630 .472 .823 .214 .512	n ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 117.3 147.3 186.1 233.5 266.7 293.0 334.5 367.5 395.3	26 40 70 128 186 246 364 482 578	
	15 min Summe 30 min Summe 60 min Summe 120 min Summe 240 min Summe 360 min Summe 480 min Summe 600 min Summe 960 min Summe	er 125. er 78. er 49. er 31. er 23. er 19. er 14. er 12. er 10. er 9. er 7. er 5.	.761 .888 .485 .042 .630 .472 .823 .214 .512 .298 .561	n ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 117.3 147.3 186.1 233.5 266.7 293.0 334.5 367.5 395.3 419.5 454.6	26 40 70 128 186 246 364 482 578 628 760	
	15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 360 min Summe 480 min Summe 600 min Summe 960 min Summe 960 min Summe	er 125. er 78. er 49. er 31. er 23. er 19. er 14. er 12. er 10. er 9. er 7. er 5. er 4.	.761 .888 .485 .042 .630 .472 .823 .214 .512 .298 .561 .650	n ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 117.3 147.3 186.1 233.5 266.7 293.0 334.5 367.5 395.3 419.5 454.6 508.3	26 40 70 128 186 246 364 482 578 628 760 1024	
	15 min Summe 30 min Summe 60 min Summe 120 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 960 min Summe 1440 min Summe 2160 min Summe 2880 min Summe	er 125. er 78. er 49. er 31. er 23. er 19. er 14. er 12. er 10. er 9. er 7. er 5. er 4. er 3. er 2.	.761 .888 .485 .042 .630 .472 .823 .214 .512 .298 .561 .650 .221 .433 .476	n ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 117.3 147.3 186.1 233.5 266.7 293.0 334.5 367.5 395.3 419.5 454.6 508.3 572.8 621.0 671.6	26 40 70 128 186 246 364 482 578 628 760 1024 1448 1852 2684	
	15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 960 min Summe 2160 min Summe 2880 min Summe 4320 min Summe	er 125. er 78. er 49. er 31. er 23. er 19. er 14. er 12. er 10. er 9. er 7. er 5. er 4. er 3. er 3. er 1.	.761 .888 .485 .042 .630 .472 .823 .214 .512 .298 .561 .650 .221 .433 .476 .964	n ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 117.3 147.3 186.1 233.5 266.7 293.0 334.5 367.5 395.3 419.5 454.6 508.3 572.8 621.0 671.6 710.9	26 40 70 128 186 246 364 482 578 628 760 1024 1448 1852 2684 3408	
	15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 960 min Summe 2480 min Summe 2880 min Summe 4320 min Summe 5760 min Summe	er 125. er 78. er 49. er 31. er 23. er 19. er 14. er 12. er 10. er 9. er 7. er 5. er 4. er 3. er 3. er 1. er 1.	.761 .888 .485 .042 .630 .472 .823 .214 .512 .298 .561 .650 .221 .433 .476 .964 .640	n ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 117.3 147.3 186.1 233.5 266.7 293.0 334.5 367.5 395.3 419.5 454.6 508.3 572.8 621.0 671.6 710.9 742.4	26 40 70 128 186 246 364 482 578 628 760 1024 1448 1852 2684 3408 4104	
	15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 960 min Summe 2480 min Summe 2480 min Summe 320 min Summe 5760 min Summe 5760 min Summe	er 125. er 78. er 49. er 31. er 23. er 19. er 14. er 12. er 10. er 9. er 7. er 5. er 4. er 3. er 1. er 1. er 1. er 1.	.761 .888 .485 .042 .630 .472 .823 .214 .512 .298 .561 .650 .221 .433 .476 .964 .640 .416	n ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 117.3 147.3 186.1 233.5 266.7 293.0 334.5 367.5 395.3 419.5 454.6 508.3 572.8 621.0 671.6 710.9 742.4 769.0	26 40 70 128 186 246 364 482 578 628 760 1024 1448 1852 2684 3408 4104 4752	
	15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 960 min Summe 2160 min Summe 2880 min Summe 4320 min Summe 5760 min Summe 7200 min Summe	er 125. er 78. er 49. er 31. er 23. er 19. er 14. er 12. er 10. er 9. er 7. er 5. er 4. er 3. er 1. er 1. er 1. er 1.	.761 .888 .485 .042 .630 .472 .823 .214 .512 .298 .561 .650 .221 .433 .476 .964 .640 .416 .251	n ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 117.3 147.3 186.1 233.5 266.7 293.0 334.5 367.5 395.3 419.5 454.6 508.3 572.8 621.0 671.6 710.9 742.4 769.0 792.0	26 40 70 128 186 246 364 482 578 628 760 1024 1448 1852 2684 3408 4104 4752 5360	
	15 min Summe 30 min Summe 60 min Summe 120 min Summe 180 min Summe 240 min Summe 360 min Summe 480 min Summe 720 min Summe 960 min Summe 2480 min Summe 2480 min Summe 320 min Summe 5760 min Summe 5760 min Summe	er 125. er 78. er 49. er 31. er 23. er 19. er 14. er 12. er 10. er 9. er 7. er 3. er 3. er 1. er 1. er 1. er 1. er 1.	.761 .888 .485 .042 .630 .472 .823 .214 .512 .298 .561 .650 .221 .433 .476 .964 .640 .416 .251 .761	n ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 117.3 147.3 186.1 233.5 266.7 293.0 334.5 367.5 395.3 419.5 454.6 508.3 572.8 621.0 671.6 710.9 742.4 769.0	26 40 70 128 186 246 364 482 578 628 760 1024 1448 1852 2684 3408 4104 4752	
	15 min Summe 30 min Summe 60 min Summe 120 min Summe 240 min Summe 360 min Summe 480 min Summe 600 min Summe 720 min Summe 2460 min Summe 2480 min Summe 2400 min Summe 5760 min Summe 5760 min Summe 5760 min Summe 5760 min Summe 5760 min Summe 10080 min Summe	er 125. er 78. er 49. er 31. er 23. er 19. er 14. er 12. er 10. er 9. er 7. er 3. er 3. er 1. er 1. er 1. er 1. er 1.	.761 .888 .485 .042 .630 .472 .823 .214 .512 .298 .561 .650 .221 .433 .476 .964 .640 .416 .251 .761	n ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 117.3 147.3 186.1 233.5 266.7 293.0 334.5 367.5 395.3 419.5 454.6 508.3 572.8 621.0 671.6 710.9 742.4 769.0 792.0 131.4	26 40 70 128 186 246 364 482 578 628 760 1024 1448 1852 2684 3408 4104 4752 5360 26	

Arcus Consult 1C Swinegate							Page 2
3 Swinegate							4
York YO1 8A3	J						Micco
Date 19/11/20	021 15:20	D	esigned	d by re	agand		
File 4246 Por	nd 200CC RD 2021	c	hecked	bv			Drainag
XP Solutions			ource (2014	1 1	
					2011.		
ç	Summary of Resul	ts for	200 ve	ear Ret	urn Pe	riod (+35%)
-	<u> </u>						<u></u>
	Storm	Max	Max	Max	Max	Status	
	Event	Level	Depth	Control	Volume		
		(m)	(m)	(l/s)	(m³)		
	60 min Winter	100 68	1 0 681	1 0	197.6	ОК	
	120 min Winter					Flood Risk	
	180 min Winter					Flood Risk	
	240 min Winter			4.0		Flood Risk	
	360 min Winter				306.6	Flood Risk	
	480 min Winter	100.97	4 0.974	4.0		Flood Risk	
	600 min Winter					Flood Risk	
	720 min Winter					Flood Risk	
	960 min Winter					Flood Risk	
	1440 min Winter 2160 min Winter					Flood Risk Flood Risk	
	2880 min Winter					Flood Risk Flood Risk	
	4320 min Winter				197.9	O K	
	5760 min Winter	100.452	2 0.452	4.0	118.5		
	7200 min Winter	100.28	7 0.287	4.0	69.7		
	8640 min Winter				43.1	ОК	
	10080 min Winter						
				3.6	29.6	O K	
	Storm Event	Rai		3.6 oded Disc	29.6		
	Storm Event	Rai (mm/)	n Floc hr) Volu (m	3.6 oded Dise ume Vc 3) (29.6 charge ! plume m ³)	OK Time-Peak (mins)	
	Storm Event 60 min Winte	Rai (mm/) er 49.	n Floc hr) Volu (m	3.6 oded Disc ume Vo 3) (0.0	29.6 charge ! olume m ³) 208.4	OK Time-Peak (mins) 68	
	Storm Event 60 min Winte 120 min Winte	Rai (mm/) er 49. er 31.	n Floc hr) Volu (m 485 042	3.6 oded Disc ume Vo 3) (0.0 0.0	29.6 charge ? lume m ³) 208.4 261.5	0 K Time-Peak (mins) 68 126	
	Storm Event 60 min Winte 120 min Winte 180 min Winte	Rai (mm/1 er 49. er 31. er 23.	n Floc hr) Volu (m 485 042 630	3.6 ded Disc ume Vc 3) (0.0 0.0 0.0 0.0	29.6 charge ? lume m ³) 208.4 261.5 298.7	0 K Time-Peak (mins) 68 126 184	
	Storm Event 60 min Winte 120 min Winte	Rai (mm/1 er 49. er 31. er 23. er 19.	n Floc hr) Volu (m 485 042 630 472	3.6 oded Disc ume Vo 3) (0.0 0.0	29.6 charge ? lume m ³) 208.4 261.5	0 K Time-Peak (mins) 68 126	
	Storm Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte	Rai (mm/1 er 49. er 31. er 23. er 19. er 14.	n Floc hr) Volu (m 485 042 630 472 823	3.6 ded Disc ume Vc 3) (0.0 0.0 0.0 0.0 0.0 0.0	29.6 charge ? lume m ³) 208.4 261.5 298.7 328.2	0 K Time-Peak (mins) 68 126 184 240	
	Storm Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte	Rai (mm/1 er 49. er 31. er 23. er 19. er 14. er 12.	n Floc hr) Volu (m 485 042 630 472 823 214	3.6 ded Dis ume Vo 3) (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	29.6 charge ? lume m ³) 208.4 261.5 298.7 328.2 374.7	0 K Time-Peak (mins) 68 126 184 240 356	
	Storm Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 480 min Winte 600 min Winte	Rai (mm/1 er 49. er 31. er 23. er 19. er 14. er 12. er 10. er 9.	n Floc hr) Volu (m 485 042 630 472 823 214 512 298	3.6 ded Dis ume Vo 3) (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	29.6 charge 9 lume m ³) 208.4 261.5 298.7 328.2 374.7 411.6 442.6 469.7	0 K Time-Peak (mins) 68 126 184 240 356 468	
	Storm Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 960 min Winte	Rai (mm/1 er 49. er 31. er 23. er 19. er 14. er 12. er 10. er 9. er 7.	n Floc hr) Volu (m 485 042 630 472 823 214 512 298 561	3.6 ded Dis ume Vc 3) (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	29.6 charge f lume m ³) 208.4 261.5 298.7 328.2 374.7 411.6 442.6 469.7 508.8	0 K Time-Peak (mins) 68 126 184 240 356 468 578 686 806	
	Storm Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 960 min Winte 1440 min Winte	Rai (mm/1 er 49. er 31. er 23. er 19. er 14. er 12. er 10. er 7. er 5.	n Floc hr) Volu (m 485 042 630 472 823 214 512 298 561 650	3.6 ded Dis ume Vc 3) (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	29.6 charge f lume m ³) 208.4 261.5 298.7 328.2 374.7 411.6 442.6 469.7 508.8 566.9	O K Time-Peak (mins) 68 126 184 240 356 468 578 686 806 1098	
	Storm Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 960 min Winte 1440 min Winte 2160 min Winte	Rai (mm/1 er 49. er 31. er 23. er 19. er 14. er 12. er 10. er 9. er 5. er 5. er 4.	n Floc hr) Volu (m 485 042 630 472 823 214 512 298 561 650 221	3.6 ded Dis ume Vc 3) (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	29.6 charge f lume m ³) 208.4 261.5 298.7 328.2 374.7 411.6 442.6 469.7 508.8 566.9 641.6	O K Time-Peak (mins) 68 126 184 240 356 468 578 686 806 1098 1564	
	Storm Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 960 min Winte 1440 min Winte 2880 min Winte	Rai (mm/1 er 49. er 31. er 23. er 19. er 14. er 12. er 10. er 5. er 5. er 4. er 3.	n Floc hr) Volu (m 485 042 630 472 823 214 512 298 561 650 221 433	3.6 ded Dis ume Vc 3) (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	29.6 charge 9 lume m ³) 208.4 261.5 298.7 328.2 374.7 411.6 442.6 469.7 508.8 566.9 641.6 695.6	O K Time-Peak (mins) 68 126 184 240 356 468 578 686 806 1098 1564 2020	
	Storm Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 960 min Winte 1440 min Winte 2160 min Winte	Rai (mm/1 er 49. er 31. er 23. er 19. er 14. er 12. er 10. er 5. er 5. er 4. er 3. er 2.	n Floc hr) Volu (m 485 042 630 472 823 214 512 298 561 650 221 433 476	3.6 ded Dis ume Vc 3) (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	29.6 charge f lume m ³) 208.4 261.5 298.7 328.2 374.7 411.6 442.6 469.7 508.8 566.9 641.6	O K Time-Peak (mins) 68 126 184 240 356 468 578 686 806 1098 1564	
	Storm Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 960 min Winte 1440 min Winte 2880 min Winte 4320 min Winte	Rai (mm/1 er 49. er 31. er 23. er 19. er 14. er 12. er 10. er 5. er 5. er 4. er 3. er 2. er 1.	n Floc hr) Vol (m 485 042 630 472 823 214 512 298 561 650 221 433 476 964	3.6 ded Dis ume Vc 3) (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	29.6 charge f lume m ³) 208.4 261.5 298.7 328.2 374.7 411.6 442.6 469.7 508.8 566.9 641.6 695.6 752.3	O K Time-Peak (mins) 68 126 184 240 356 468 578 686 806 1098 1564 2020 2900	
	Storm Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 960 min Winte 1440 min Winte 2880 min Winte 320 min Winte	Rai (mm/1 er 49. er 31. er 23. er 19. er 14. er 12. er 10. er 5. er 5. er 4. er 3. er 2. er 1. er 1.	n Floc hr) Volu (m 485 042 630 472 823 214 512 298 561 650 221 433 476 964 640	3.6 ded Dis ume Vc 3) (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	29.6 charge f lume m ³) 208.4 261.5 298.7 328.2 374.7 411.6 442.6 469.7 508.8 566.9 641.6 695.6 752.3 796.3	O K Time-Peak (mins) 68 126 184 240 356 468 578 686 806 1098 1564 2020 2900 3568	
	Storm Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 960 min Winte 1440 min Winte 2160 min Winte 2880 min Winte 4320 min Winte 5760 min Winte	Rai (mm/1 er 49. er 31. er 23. er 19. er 14. er 12. er 10. er 5. er 5. er 4. er 3. er 2. er 1. er 1.	n Floc hr) Vol (m 485 042 630 472 823 214 512 298 561 650 221 433 476 964 640 416	3.6 ded Dis ume Vc 3) (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	29.6 charge f lume m ³) 208.4 261.5 298.7 328.2 374.7 411.6 442.6 469.7 508.8 566.9 641.6 695.6 752.3 796.3 831.5	O K Time-Peak (mins) 68 126 184 240 356 468 578 686 806 1098 1564 2020 2900 3568 4120	
	Storm Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 960 min Winte 1440 min Winte 2880 min Winte 4320 min Winte 5760 min Winte 8640 min Winte	Rai (mm/1 er 49. er 31. er 23. er 19. er 14. er 12. er 10. er 5. er 5. er 4. er 3. er 2. er 1. er 1.	n Floc hr) Volu (m 485 042 630 472 823 214 512 298 561 650 221 433 476 964 640 416	3.6 ded Dis ume Vc 3) (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	29.6 charge f lume m ³) 208.4 261.5 298.7 328.2 374.7 411.6 442.6 469.7 508.8 566.9 641.6 695.6 752.3 796.3 831.5 861.3	O K Time-Peak (mins) 68 126 184 240 356 468 578 686 806 1098 1564 2020 2900 3568 4120 4752	
	Storm Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 960 min Winte 1440 min Winte 2880 min Winte 4320 min Winte 5760 min Winte 8640 min Winte	Rai (mm/1 er 49. er 31. er 23. er 19. er 14. er 12. er 10. er 5. er 5. er 4. er 3. er 2. er 1. er 1.	n Floc hr) Volu (m 485 042 630 472 823 214 512 298 561 650 221 433 476 964 640 416	3.6 ded Dis ume Vc 3) (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	29.6 charge f lume m ³) 208.4 261.5 298.7 328.2 374.7 411.6 442.6 469.7 508.8 566.9 641.6 695.6 752.3 796.3 831.5 861.3	O K Time-Peak (mins) 68 126 184 240 356 468 578 686 806 1098 1564 2020 2900 3568 4120 4752	
	Storm Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 960 min Winte 1440 min Winte 2880 min Winte 4320 min Winte 5760 min Winte 8640 min Winte	Rai (mm/1 er 49. er 31. er 23. er 19. er 14. er 12. er 10. er 5. er 5. er 4. er 3. er 2. er 1. er 1.	n Floc hr) Volu (m 485 042 630 472 823 214 512 298 561 650 221 433 476 964 640 416	3.6 ded Dis ume Vc 3) (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	29.6 charge f lume m ³) 208.4 261.5 298.7 328.2 374.7 411.6 442.6 469.7 508.8 566.9 641.6 695.6 752.3 796.3 831.5 861.3	O K Time-Peak (mins) 68 126 184 240 356 468 578 686 806 1098 1564 2020 2900 3568 4120 4752	
	Storm Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 960 min Winte 1440 min Winte 2880 min Winte 4320 min Winte 5760 min Winte 8640 min Winte	Rai (mm/1 er 49. er 31. er 23. er 19. er 14. er 12. er 10. er 5. er 5. er 4. er 3. er 2. er 1. er 1.	n Floc hr) Volu (m 485 042 630 472 823 214 512 298 561 650 221 433 476 964 640 416	3.6 ded Dis ume Vc 3) (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	29.6 charge f lume m ³) 208.4 261.5 298.7 328.2 374.7 411.6 442.6 469.7 508.8 566.9 641.6 695.6 752.3 796.3 831.5 861.3	O K Time-Peak (mins) 68 126 184 240 356 468 578 686 806 1098 1564 2020 2900 3568 4120 4752	
	Storm Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 960 min Winte 1440 min Winte 2880 min Winte 4320 min Winte 5760 min Winte 8640 min Winte	Rai (mm/1 er 49. er 31. er 23. er 19. er 14. er 12. er 10. er 5. er 5. er 4. er 3. er 2. er 1. er 1.	n Floc hr) Volu (m 485 042 630 472 823 214 512 298 561 650 221 433 476 964 640 416	3.6 ded Dis ume Vc 3) (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	29.6 charge f lume m ³) 208.4 261.5 298.7 328.2 374.7 411.6 442.6 469.7 508.8 566.9 641.6 695.6 752.3 796.3 831.5 861.3	O K Time-Peak (mins) 68 126 184 240 356 468 578 686 806 1098 1564 2020 2900 3568 4120 4752	
	Storm Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 960 min Winte 1440 min Winte 2880 min Winte 4320 min Winte 5760 min Winte 8640 min Winte	Rai (mm/1 er 49. er 31. er 23. er 19. er 14. er 12. er 10. er 5. er 5. er 4. er 3. er 2. er 1. er 1.	n Floc hr) Volu (m 485 042 630 472 823 214 512 298 561 650 221 433 476 964 640 416	3.6 ded Dis ume Vc 3) (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	29.6 charge f lume m ³) 208.4 261.5 298.7 328.2 374.7 411.6 442.6 469.7 508.8 566.9 641.6 695.6 752.3 796.3 831.5 861.3	O K Time-Peak (mins) 68 126 184 240 356 468 578 686 806 1098 1564 2020 2900 3568 4120 4752	
	Storm Event 60 min Winte 120 min Winte 180 min Winte 240 min Winte 360 min Winte 480 min Winte 960 min Winte 1440 min Winte 2880 min Winte 4320 min Winte 5760 min Winte 8640 min Winte	Rai (mm/1 er 49. er 31. er 23. er 19. er 14. er 12. er 10. er 5. er 5. er 4. er 3. er 2. er 1. er 1.	n Floc hr) Volu (m 485 042 630 472 823 214 512 298 561 650 221 433 476 964 640 416	3.6 ded Dis ume Vc 3) (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	29.6 charge f lume m ³) 208.4 261.5 298.7 328.2 374.7 411.6 442.6 469.7 508.8 566.9 641.6 695.6 752.3 796.3 831.5 861.3	O K Time-Peak (mins) 68 126 184 240 356 468 578 686 806 1098 1564 2020 2900 3568 4120 4752	

Arcus Consulting		Page 3
1C Swinegate Ct East		
3 Swinegate		4
York YO1 8AJ		
Date 19/11/2021 15:20	Designed by reagand	— Micro
File 4246 Pond 200CC RD 2021		Drainage
XP Solutions	Source Control 2014.1.1	
	<u>Rainfall Details</u>	
Rainfall M	Iodel FEH	
Return Period (ye		
	ation GB 302700 965000 ND 02700 65000 (1km) -0.023	
	(1km) 0.449	
	(1km) 0.403	
	(1km) 0.316	
	(1km) 0.269 (1km) 2.177	
Summer St	corms Yes	
Winter St		
Cv (Sun Cv (Wir		
Shortest Storm (m		
Longest Storm (m	nins) 10080	
Climate Char	nge % +35	
	<u>Time Area Diagram</u>	
2	Total Area (ha) 0.503	
Time (mins) Area	Time (mins) Area Time (mins) Area	
From: To: (ha)	From: To: (ha) From: To: (ha)	
0 4 0.168	4 8 0.168 8 12 0.168	
	82-2014 XP Solutions	

Arcus Consultin	ng						Page 4	
1C Swinegate Ct	t East							
3 Swinegate							Ly	
York YO1 8AJ							Mirro	
Date 19/11/2023				d by reag	and		Drainago	
File 4246_Pond	_200CC_RD_2	2021	Checked	-			Dialitage	
XP Solutions			Source	Control 2	014.1.1			
		ז	Model De	tails				
		-	10401 20					
	Storage is Online Cover Level (m) 101.000							
		<u>Tank</u>	or Pond	Structure	<u>•</u>			
		Inver	t Level (m) 100.000				
	Dept	h (m) Are	ea (m²) De	epth (m) Ar	ea (m²)			
		0.000	212.0	1.000	468.7			
	Hydro	-Brake	<u>Optimum®</u>	Outflow	<u>Control</u>			
					95-4000-100			
		-	n Head (m Flow (l/s			1.000 4.0		
		-	Flush-Flo		Calo	culated		
			-		upstream s	-		
			.meter (mm . Level (m			95 100.000		
Mi	nimum Outlet				-	150		
	Suggested Ma	nhole Dia	meter (mm)		1200		
	с	ontrol Po	ints	Head (m)	Flow (l/s)			
	Design	Point (Ca	alculated)	1.000 0.294	4.0			
Kick-Flo® 0.629 3.2 Mean Flow over Head Range - 3.5								
The hydrologica Hydro-Brake Opt Hydro-Brake Opt invalidated Depth (m) Flow	imum® as spe imum® be uti	cified. lised the	Should an en these s	other type torage rout	of control ing calcula	device o ations wi	ther than a ll be	
0.100		.200	4.3	3.000	6.7	7.000	10.0	
0.200 0.300		.400	4.7 5.0	3.500 4.000	7.2 7.6	7.500 8.000	10.3 10.6	
0.400		.800	5.0	4.000	8.1	8.000 8.500	10.6	
0.500	3.8 2	.000	5.5	5.000	8.5	9.000	11.2	
0.600		.200	5.8	5.500	8.9	9.500	11.5	
0.800 1.000		.400	6.0 6.2	6.000 6.500	9.3 9.6			
	I		I		I			
		@1082	2014 VD	Solution				

APPENDIX F – POND MAINTENANCE SCHEDULE

Maintenance schedule	Required action	Typical frequency	
Regular Maintenance	Remove litter and debris	Monthly (or as required)	
	Cut the grass (in public areas)	Monthly (during growing season)	
	Cut meadow grass	Half yearly (spring, before nesting season, and autumn)	
	Inspect marginal and bankside vegetation and remove nuisance plants for first 3 years	Monthly (as start, then as required)	
	Inspect inlets, outlets, bankside, structures, pipework etc for evidence of blockage and/or physical damage	Monthly	
	Inspect water body for signs of poor water quality	(Monthly (May – October)	
	Inspect silt accumulation rates in any forebay and in main body of the pond and establish appropriate removal frequencies; undertake contamination testing on some build up has occurred, to inform management and disposal options	Half yearly	
	Checky any mechanical devices (e.g., penstocks)	Half yearly	
	Hand cut submerged and emergent aquatic plants (at minimum of 0.1 m above pond base; include max 25% of pond surface)	Annually	
	Remove 25% of bank vegetation from water's edge to a minimum of 1 m above water level	Annually	
	Tidy all dead growth (Scrub clearance) before start of growing season (Note: tree maintenance usually part of overall landscape management contract)	Annually	
	Remove sediment from any forebay	Every 1-5 years, or as required	
	Remove sediment and planting from one quadrant of the main body of ponds without sediment forebays	Every 5 years, or as required	
Occasional Maintenance	Remove sediment from the main body of big ponds when pool volume is reduced by 20%	With effective pre- treatment, this will only be required rarely, e.g., every 25-50 years	
Remedial actions	Repair erosion or other damage	As required	
	Replate where necessary Aerate pond when signs of eutrophication are detected	As required As required	
	Realign rip-rap or repair other damage	As required	
	Repair/rehabilitate inlets, outlet, overflows and vents	As required	

Long-term Maintenance Schedule for the Attenuation Pond¹

 $^{^{\}rm 1}$ Based on Table 23.1 - Operation and maintenance requirements for attenuation pond and wetlands of the SuDS Manual

Maintenance schedule	Required action	Typical frequency	
Regular Maintenance	Remove litter and debris	Monthly (or as required)	
	Cut the grass (in public areas)	Monthly (during growing season)	
	Cut meadow grass	Half yearly (spring, before nesting season, and autumn)	
	Inspect marginal and bankside vegetation and remove nuisance plants for first 3 years	Monthly (as start, then as required)	
	Inspect inlets, outlets, bankside, structures, pipework etc for evidence of blockage and/or physical damage	Monthly	
	Inspect water body for signs of poor water quality	(Monthly (May – October)	
	Inspect silt accumulation rates in any forebay and in main body of the pond and establish appropriate removal frequencies; undertake contamination testing on some build up has occurred, to inform management and disposal options	Half yearly	
	Checky any mechanical devices (e.g., penstocks)	Half yearly	
	Hand cut submerged and emergent aquatic plants (at minimum of 0.1 m above pond base; include max 25% of pond surface)	Annually	
	Remove 25% of bank vegetation from water's edge to a minimum of 1 m above water level	Annually	
	Tidy all dead growth (Scrub clearance) before start of growing season (Note: tree maintenance usually part of overall landscape management contract)	Annually	
	Remove sediment from any forebay	Every 1-5 years, or as required	
	Remove sediment and planting from one quadrant of the main body of ponds without sediment forebays	Every 5 years, or as required	
Occasional Maintenance	Remove sediment from the main body of big ponds when pool volume is reduced by 20%	With effective pre- treatment, this will only be required rarely, e.g., every 25-50 years	
Remedial actions	Repair erosion or other damage	As required	
	Replate where necessary Aerate pond when signs of eutrophication are detected	As required As required	
	Realign rip-rap or repair other damage	As required	
	Repair/rehabilitate inlets, outlet, overflows and vents	As required	

Long-term Maintenance Schedule for the Attenuation Pond¹

 $^{^{\}rm 1}$ Based on Table 23.1 - Operation and maintenance requirements for attenuation pond and wetlands of the SuDS Manual

APPENDIX G – HIGHLAND COUNCIL ASSESSMENT COMPLIANCE CERTIFICATION

APPENDIX C: SELF CERTIFICATION (overleaf)

FRA and DIA Guidance

Assessment Compliance Certificate

I certify that all reasonable skill, care and attention to be expected of a qualified and experienced professional in this field have been exercised in carrying out the attached Assessment. I also confirm that I maintain the required Professional Indemnity Insurance*. The report has been prepared in support of the below named development in accordance with the reporting requirements issued by The Highland Council.

Please select Assessment type:

Flood Risk Assessment	Drainage Impact As	sessment	
Additional Information			
Assessment Ref No:	Assessmen Revision:	t	
Assessment Date:	Planning Applicatior No:	1	
Name of Development:			
Address of Development:			
Name of Developer:			
Name and Address of			
Organisation preparing this Assessment:			
Name of Approver:		Date:	
Signed:			

Position Held:

Qualification of person responsible for signing off this Assessment**

- * Please attach appropriate evidence of Professional Indemnity Insurance
- ** A chartered member of a relevant professional institution