

COYLTON GREENER GRID PARK

LAND SOUTH OF AYR ROAD, COYLTON

APPENDIX 2: DRAINAGE IMPACT ASSESSMENT

OCTOBER 2021

Prepared by Arcus Consultancy Services

7th Floor 144 West George Street Glasgow G2 2HG

T +44 (0)1904 715 470 l E info@arcusconsulting.co.uk w www.arcusconsulting.co.uk

Registered in England & Wales No. 5644976

TABLE OF CONTENTS

1	INTRO	DUCTION2
	1.1	Background2
	1.2	Site Context2
	1.3	Development Infrastructure
2	SURFA	CE WATER DISCHARGE RATES4
	2.1	Surface Water Discharge Options
	2.2	Greenfield Run-off rates
	2.3	Return Period and Climate Change Allowance5
	2.4	Discharge to Watercourse
3	SURFA	CE WATER DRAINAGE DESIGN
	3.1	Proposed Surface Water Drainage Scheme7
	3.2	Exceedance Design
	3.3	Water Quality
	3.4	Construction Phase9
4	FOUL	WATER DRAINAGE9
5	LONG	TERM MANAGEMENT AND TIMESCALES9
	5.1	Long Term Management9
	5.2	Timescales
6	CONCI	_USION10
APPEN	IDIX A	– SITE LAYOUT
APPEN	IDIX B	– INFILTRATION TESTING TECHNICAL NOTE12
APPEN	IDIX C	– ICP RURAL RUNOFF RATES13
APPEN	IDIX D	– OUTLINE DRAINAGE LAYOUT14
APPEN	IDIX E	– MICRODRAINAGE MODEL OUTPUTS15
APPEN	IDIX F	- POND MAINTENANCE SCHEDULE

Document Control

	Date	Version	Role		Print Name	Signature
Author	05/10/2021	1-0	Senior Hydrologist (Arcus)	BA hons MCIWEM	Reagan Duff	Rauff
Check & Review	06/10/2021	1-0	Associated Director (Arcus)	BSc hons MCIWEM C.WEM	Liam Nevins	L. Neut
Author	13/10/2021	2-0	Senior Hydrologist (Arcus)	BA hons MCIWEM	Reagan Duff	Rauff

Revisions

	Date	Version	Role		Print Name	Signature
Author	06/10/2021	1-1	Senior Hydrologist (Arcus)	BA hons MCIWEM	Reagan Duff	Rauff
Issued	11/10/2021	1-1	Senior Planning Consultant (Arcus)	MA MSc MRTPI	Martin Gillespie	Mar lathe
Author	15/10/2021	3-0	Senior Hydrologist (Arcus)	BA hons MCIWEM	Reagan Duff	Rauff
Issued	15/10/2021	3-0	Senior Planning Consultant (Arcus)	MA MSc MRTPI	Martin Gillespie	Mar lathe
Author	21/10/2021	3-1	Senior Hydrologist (Arcus)	BA hons MCIWEM	Reagan Duff	Rauff

1 INTRODUCTION

1.1 Background

This Drainage Impact Assessment ('DIA') has been produced in support of a planning application for the construction of a Greener Grid Park ('the Development') on land within land south of Ayr Road, Coylton ('the Site').

The DIA has been prepared by Arcus Consultancy Services Ltd ('Arcus'), on behalf of Statkraft UK LTD ('the Applicant') to satisfy the following requirements:

- Scottish Government, Planning Advice Note 61: Planning and Sustainable Urban Drainage Systems¹;
- Scottish Government, Planning Advice Note 79: Planning Advice Note 79: Water and Drainage²;
- Scottish Environmental Protection Agency (SEPA), Technical Flood Risk Guidance for Stakeholders³;
- Scottish Water, Sewers for Scotland 4th Edition⁴;
- CIRIA, The SuDS Manual (C753)⁵;
- East Ayrshire Council ('EAC'), Local Development Plan Policy EN11⁶;
- EAC, Local Development Plan Supplementary Guidance⁷; and
- North Ayrshire Council, Ayrshire Local Plan District Local Flood Risk Management Plan⁸.

The Site Layout Plan can be found in Appendix A of this report.

1.2 Site Context

The Site comprises an area of approximately 1.99 hectares (ha) and is located south of Ayr Road, Coylton, East Ayrshire. The Site is located approximately 2 kilometres (km) northeast of Drongan and adjacent to the existing Coylton substation centred on National Grid Reference (NGR) of E 246508, N 619639 as shown in Plate 1.

The Site is greenfield with an existing agricultural land use.

² Scottish Government, Planning Advice note 79: Water and Drainage (2006). [Online]. Available at:

⁵ CIRIA, The SuDS Manual (C753) (2015). [Online]. Available at:

¹ Scottish Government, Planning Advice Note 61: Planning and Sustainable Urban Drainage Systems (2001). [Online]. Available at: https://www.gov.scot/publications/pan-61-sustainable-urban-drainage-systems/ (Accessed 05/10/2021)

https://www.gov.scot/publications/planning-advice-note-pan-79-water-drainage/(Accessed 05/10/2021)

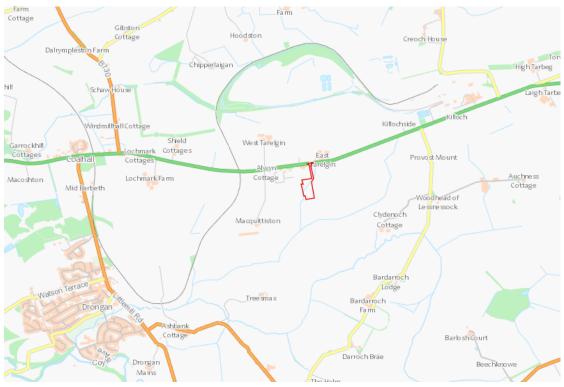
³ SEPA, Technical Flood Risk Guidance for Stakeholders (2019). [Online]. Available at:

https://www.sepa.org.uk/environment/land/planning/guidance-and-advice-notes/ (Accessed 05/10/2021)

⁴ Scottish Water, Sewers for Scotland (2018). [Online]. Available at: https://www.scottishwater.co.uk/-/media/ScottishWater/Document-Hub/Business-and-Developers/Connecting-to-our-network/All-connectionsinformation/SewersForScotlandv4.pdf (Accessed 30/09/2021)

https://www.ciria.org/AsiCommon/Controls/BSA/Downloader.aspx (Accessed 05/10/2021)

⁶ East Ayrshire Council, Local Development Plan, Policy EN11 (2020). [Online]. Available at: https://www.east-


ayrshire.gov.uk/PlanningAndTheEnvironment/Development-plans/LocalAndStatutoryDevelopmentPlans/Environment.aspx

⁷East Ayrshire Council, Local Development Plan Supplementary Guidance (2018). [Online]. Available at: https://www.eastayrshire.gov.uk/Resources/PDF/P/Planning-SG-Masterplanning.pdf (Accessed 05/10/2021)

⁸ North Ayrshire Council, Ayrshire Local Plan District Local Flood Risk Management Plan (2016). [Online]. Available at: https://www.east-ayrshire.gov.uk/Resources/PDF/A/Ayrshire-Flood-Risk-Management-Plan.pdf (Accessed 05/10/2021)

Plate 1: Site Location

LiDAR data to 50 centimetre resolution indicates Site elevations are in the range of 149 to 131 metres (m) Above Ordnance Datum ('AOD'), with Site topography falling from a high point in the north to a low point in the south west.

Infiltration testing has been carried out at the Site by SFK Ltd in September 2021. The test pits indicated that underlying strata comprises clays to 1 m below ground level (bgl). The infiltration testing technical note and logs can be found in Appendix B.

1.3 Development Infrastructure

The Site Layout (as shown in Appendix A) will create a total impermeable area of 0.38 ha, detailed further in Table 1.

The proposed access tracks will comprise of permeable materials (*e.g.*, Type 2 aggregate) and will be free draining and are therefore excluded from the total impermeable areas.

Hardstanding Infrastructure	Total Area of Hardstanding (m ²)
48 no. Battery Units (12.9 m x 2.44 m per unit)	1,510.8
6 no. Inverter Units (6.1 m x 2.44 m per unit)	89.3
1 no. 275kV AIS and Transformer (14.8 m x 5.05 m per unit)	74.7
2 no. 2500kVA 690 V Transformers (4 m x 4 m per unit)	32
1 no. 1000kVA 400V BoP Auxiliary Transformers (3 m x 3 m per unit)	9
1 no. LV Electrical House (12.19 m x 3.45 m per unit)	42.1
2 no. Synchronous Compensator (38.6m x 20.7 m per unit)	1598

Table 1: Proposed Impermeable Areas

6 no. Air Blast Cooler (9.6 m x 2.4 m per unit)	138.2
2 no. Water Cooler Pump Skid (6.35 m x 2.05 m per unit)	26
2 no. lube oil pump skids (2.15 m x 1.1 m per unit)	4.7
1 no. MV Electrical House (12.19 m x 3.45 m per unit)	42.1
1 no. Comms House (12.19 m x 2.44 m per unit)	29.7
2 no. Emergency Backup Diesel Generator (5.1 m x 2.07 m per unit)	21.1
6 no. Switchgear Container (12.2 m x 2.44 m per unit)	178.6
Total Hardstanding (m ²):	3796.3
Total Hardstanding (ha):	0.380

2 SURFACE WATER DISCHARGE RATES

2.1 Surface Water Discharge Options

In accordance with the SuDS Manual and Sewers for Scotland, an evaluation has been undertaken to determine the most appropriate option to dispose of surface water from the Development.

The Development will be predominantly unoccupied with ad hoc maintenance visits and will therefore have no demand for water re-use onsite.

Infiltration testing has been carried out at the Site in September 2021, with two test pits excavated as detailed in Appendix B. The infiltration test results outline that the underlying strata comprises clay based strata with both test pits failing to provide an infiltration rate and, as such, soakaways at the Site will not be feasible.

Managed discharge to a watercourse will be the most appropriate option to dispose of surface water from the Development in accordance with the SuDS Manual and Sewers for Scotland, with information within Table 2 summarising the appropriate discharge method along with rationale.

Disposal route	Feasible?	Reason
Re-use onsite	*	Site will be unmanned with infrequent maintenance visits, therefore no demand for water re-use.
Infiltrate to ground	*	Infiltration testing has been carried out at the Site with no positive infiltration rate obtained, as shown in Appendix B.
Discharge to watercourse	~	In accordance with the drainage hierarchy surface water will be discharged to a nearby watercourse, if required.
Discharge to surface water sewer	×	Surface water to discharge into nearby watercourse.
Discharge to combined sewer	×	Surface water to discharge into nearby watercourse.

 Table 2: Surface Water Discharge Methods

2.2 Greenfield Run-off rates

Greenfield runoff rates for the 0.38 ha of impermeable area, outlined in Table 1 and shown in Appendix A, have been calculated using the Interim Code of Practice for SuDS (ICP SuDS) method⁹ via Micro Drainage Software with rates shown in Table 3 and Appendix C.

The application of this approach leads to the runoff from the Site to be attenuated and discharged to the greenfield runoff rate of 3.1 l/s in up to the 200-year return period, with appropriate climate change allowances.

Table 3: Site Greenfield Runoff Flow Rates (taken from Micro Drainage)

Return Period	Q (l/s)
Qbar	3.1
1	2.7
30	5.9
100	8.2
200	9.3

2.3 Return Period and Climate Change Allowance

In accordance with Map 1 of SEPA's climate change allowances¹⁰ a 55 % allowance has been incorporated into the drainage design ('+55 % CC').

In accordance with Paragraph 2.7.1.4 of the Suds Manual and Sewers for Scotland 4^{th} Edition, any on site storage attenuation features will be assessed with flooding and surcharging prevented in up to a 1:30 (+55 % CC) year event and flooding prevented in up to a 1:200-year (+55 % CC) event.

In accordance with Paragraph 2.6.1 and 2.6.8 of the SuDS Manual and Sewers for Scotland 4^{th} Edition and acknowledging the electrically sensitive nature of the onsite infrastructure, it is required that the Site is assessed in up the 1:200-year (+55 % CC) return period runoff volumes.

2.4 Discharge to Watercourse

As detailed in Section 2.1, the SuDS hierarchy has been consulted, with discharge to a nearby watercourse deemed the practicable form of drainage at the Site.

Ordnance Survey ('OS') mapping indicates that there is an open land drain flowing through the Site, which is approximately 600 m in length and discharges into the Taiglum Burn approximately 1.5 km south of the Site. The watercourse is shown to be culverted for approximately 8 m at the Site.

As the Development infrastructure will pass over the route of the open land drain the watercourse will be diverted around the infrastructure in accordance with the existing topography of the surrounding grounds and the watercourse. This option will limit the requirement for culverting the watercourse for land gain and has taken cognisance of SEPA's WAT-PS-06-02: Culverting of Watercourses – Position Statement and Supporting Guidance¹¹.

⁹ National SuDS Working Group, Interim Code of Practice for Sustainable Drainage Systems (2004). [Online]. Available at: https://www.susdrain.org/files/resources/other-quidance/nswg icop for suds 0704.pdf (Accessed 05/10/2021)
 ¹⁰ SEPA, Climate Change Allowances for Flood Risk Assessment in Land Use Planning (2019). [Online]. Available at: https://www.sepa.org.uk/media/426913/lups_cc1.pdf (Accessed 05/10/2021)

¹¹ https://www.sepa.org.uk/media/150919/wat_ps_06_02.pdf

The watercourse divergence will be conducted in accordance with SEPA guidance and the SEPA Controlled Activities Regulations ('CAR') will be consulted to obtain authorisation for the divergence.

The CAR approval process and the exact route of the divergence will be confirmed prior to construction and it is assessed that this will be sought through an appropriately worded planning condition.

For the purpose of confirming an appropriate discharge location an approximate divergence route is provided in Plate 2.

Plate 2: Approximate Watercourse Divergence Route

The UK CEH (FEH) web map 12 indicates that the watercourse is served by a catchment of 1.44 $\rm km^2$, as shown in Plate 3.

¹² UK Centre for Ecology and Hydrology, Flood Estimation Handbook. [Online]. Available at: <u>https://fehweb.ceh.ac.uk/GB/map</u> (Accessed 05/10/2021)

Plate 3: Receiving Watercourse Catchment Extents

3 SURFACE WATER DRAINAGE DESIGN

The measures outlined in the following Sections will be implemented by the Applicant's Contractor to ensure that greenfield runoff rates are maintained during the construction and operational phases of the Development. Should the drainage measures or locations differ significantly to what is outlined within this document, then the final detailed drainage design will be provided by the Contractor prior to construction.

3.1 Proposed Surface Water Drainage Scheme

The impermeable areas within the Development will be connected to an attenuation pond to the south of the Site via a piped filter drain system, as shown in Appendix D.

The outfall to the open land drain will be along the diverted route located within the extents of the existing land ownership and no third party access agreements are required for the route to the discharge point.

The outflow of the pond to the nearest watercourse will be controlled by a Hydro-Brake (or other flow control device) and discharge to the watercourse at 3.1 l/s.

In order to provide the Site with suitable attenuation of surface water in relation to the storage structure requirements the pond will comprise of the approximate dimensions in accordance with the SuDS Manual:

- Base area: 152 m²;
- Total area: 405.1 m²;
- Depth: 1.1 m; and
- Side slope: 1 in 4.

The 'worst-case' scenario event in up to a 1:200-year (+55 % CC) event is shown in Plate 4, with the designed pond able to attenuate surface water flows without surcharge.

Details of critical events by return period and cross sections of the pond can be found in Appendix E.

A layout plan of the proposed surface water network can be found in Appendix D.

Plate 4: Network 1:200-Year (+CC) Critical Storm Event (Taken from Micro Drainage)

Storm Event	Rain (mm/hr)	Time to Vol Peak (mins)	Max Water Level (m)	Max Depth (m)			Discharge Volume (m ²)			Status
1440 min Winter	6.580	1126	130.999	1.099	0.0	3.1	469.0	3.1	295.0	Flood Risk

3.2 Exceedance Design

As detailed in Section 3.1 the pond will attenuate surface water for the 1:200-year (+55%) event with no overtopping and therefore will not result in exceedance flows and surface water will be managed onsite.

During extreme rainfall events (*e.g.*, 1:1,000-year) any surface water which overtops the pond will disperse within the Site in accordance with topography.

The pond is located at lower elevations than the Development and any exceedance flows will disperse away from the Development in accordance with topography and no exceedance flows will impact the Development.

The pond is not located within close proximity to residential or commercial property and will not impact surrounding developments during any exceedance event.

3.3 Water Quality

The Development will involve the construction and operation of a Greener Grid Park involving less than 300 traffic movements per day. Table 26.2 *Pollution hazard indices for different land use classifications* of the SuDS Manual identifies that the Development has a Pollution Hazard Level of Low, taken from the 'Low Traffic Roads e.g. residential roads and general access roads, < 300 traffic movements/day' scenario.

Table 5 outlines that the Development includes land uses which have the following Simple Index Approach (SIA) indices.

Land use	Pollution Level Hazard	Total Suspended Solids (TSS)	Metals	Hydrocarbons
Individual property driveways, residential car parks, low traffic roads (<i>e.g.</i> cul de sacs, home zones and general access roads) and non- residential car parking with infrequent change (e.g. schools, offices) i.e. < 300 traffic movements/day	Low	0.5	0.4	0.4

Table 5: Pollution Hazard Indices for Land Use Classifications

A SIA has been developed on behalf of the Construction Industry Research and Information Association (CIRIA) to support the implementation of the water quality management design methods set out in the SuDS Manual, with appropriate cross referencing to the relevant 'Design Conditions' in the tool.

The Development has been categorised as 'Commercial/Industrial roofing: Low potential for metal leaching' within the SIA tool.

The permeable / porous roads will be sufficient to effectively mitigate any suspended solids, metals and hydrocarbons held within surface water at the Development prior to discharging into the receiving watercourse under expected conditions i.e. in the absence of large hydrocarbon spills.

The SIA outputs appended to this report, and as shown in Table 6, demonstrate that the combined Pollution Mitigation Indices for the run-off area are met by the installation of a pond.

The outputs of the SIA tool indicate that the SuDS network has the required treatment potential in relation to the potential pollution hazard of the Development in the absence of significant spillages of hydrocarbons or other pollutants.

	Total Suspended Solids	Metals	Hydrocarbons
Pollution Hazard Indices	0.5	0.4	0.5
Pond	0.7	0.7	0.5

Table 6: SIA outputs for Low Pollution Hazard Level scenario

3.4 Construction Phase

The nature of hydrological incidents that could result from construction activities will be mitigated through the implementation of construction phase SuDS and the application of industry good practice as per CIRIA Guidance (C741)¹³.

To prevent any sediment increase in associated runoff during the construction phase SuDS measures (*e.g.* spill kits, bunds, drip trays, plant nappies, designated refuelling points, emergency response plans) will effectively prevent sediment entering surrounding watercourses.

The implementation of such construction phase SuDS is to be confirmed with EAC prior to the construction phase.

4 FOUL WATER DRAINAGE

The Development will be unoccupied throughout the operational phase excluding ad hoc maintenance visits and will therefore not require a main connected foul water drainage solution.

The onsite welfare facility will have 'porta-loo' facilities which will comprise of waste being stored, managed and carried offsite by a licensed waste management courier.

Any foul water associated with a canteen/kitchen within the welfare facility will be stored within a waste water unit and will be managed and carried offsite by a licensed courier.

5 LONG TERM MANAGEMENT AND TIMESCALES

5.1 Long Term Management

It will be the responsibility of the Applicant's Contractor to maintain effective drainage measures and rectify drainage measures that are not functioning adequately. This will be reviewed throughout construction and post-construction. The Contractor will also have responsibility for reporting on the functionality of drainage measures during regular Safety, Health and Environmental Quality meetings.

¹³ The Construction Industry Research and information Association (CIRIA), (2015), Environmental Good Practice on Site Guide (C741), CIRIA: London.

Where hardstanding areas will remain through the lifetime of the Development, the SuDS measures serving these areas will also remain in place and will be checked on a regular basis by visiting maintenance staff who will follow the propose management and maintenance programme. Should drainage measures require dredging or unblocking, this will be undertaken as soon as practicable by a local contractor.

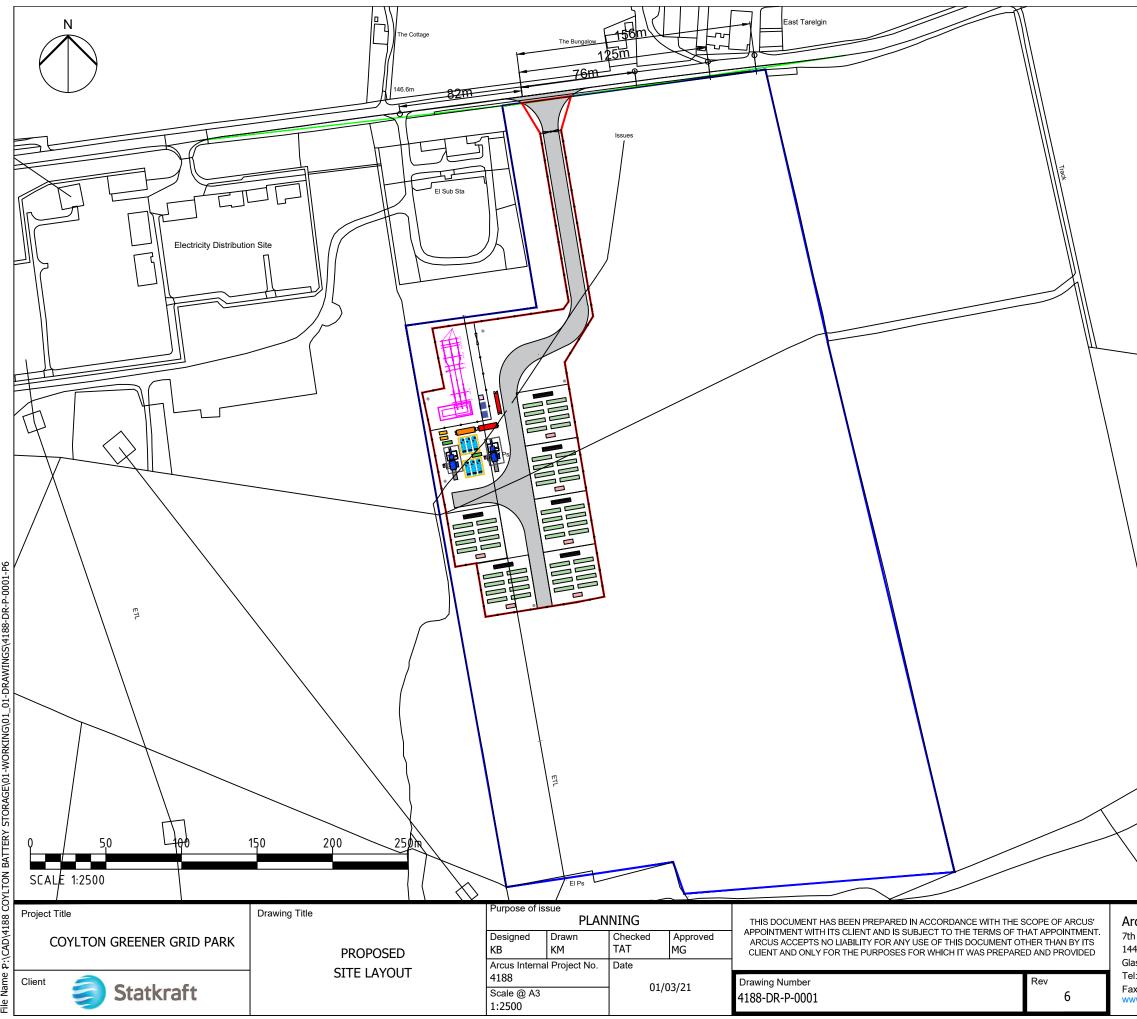
Appendix F outlines the management and maintenance programmes for the pond.

5.2 Timescales

Drainage measures outlined within this report should be implemented as soon as practical by the Applicant's Contractor but as a minimum before the construction of any impermeable surfaces which are proposed to drain into the approved drainage system.

Measures such as drainage pipes should be installed at the same time as the excavations, or as soon as practicable thereafter.

6 CONCLUSION


This report provides details on the volume of storage required to attenuate surface water runoff from the construction of the Development.

Infiltration testing has confirmed that disposal to ground is not possible and therefore surface water will discharge to a watercourse.

The proposed pond and associated piped network detailed within this report are shown to not surcharge during a 1:200-year (+55 % CC) event and discharge to the nearest watercourse at a 3.1 l/s.

APPENDIX A – SITE LAYOUT

Reproduced from Ordnance Survey digital map data © Crown copyright 2018. All rights reserved. License number 100048606

	KEY:
	SITE BOUNDARY
	LAND OWNERSHIP BOUNDARY
	FENCELINE
	275kV AIS & TRANSFORMER (1 No. 14.8m x 5.05m x 10.8m)
	SYNC CONDENSER (WITH FLYWHEEL, PONY MOTOR AND FLYWHEEL PROTECTION ENCLOSURE) 2 No. 38.6m x 20.7m x 10.0m ACCESS ENVELOPE)
	AIR BLAST COOLER (6No. 9.6m x 2.4m x 2.5m)
	WATER COOLER PUMP SKID (2 No. 6.35m x 2.05m x 2.6m)
	LUBE OIL PUMP SKID (2 No. 2.15m x 1.1m x 1.1m)
	MV ELECTRICAL HOUSE (1 No. 12.19m x 3.45m x 2.59m)
	LV ELECTRICAL HOUSE (1 No. 12.19m x 3.45m x 2.59m)
	2500kVA 690V TRANFORMERS (2 No. 4.0m X 4.0m x 2.9m)
	1000kVA 400V BoP AUXILIARY TRANSFORMERS (1 No. 3.0m x 3.0m x 2.14m)
	BoP COMMS HOUSE (1No. 12.19m x 2.44m x 2.59m)
	EMERGENCY BACK UP DIESEL GENERATOR (2No. 5.1m x 2.07m x 1.6m)
	NOISE ATTENUATION FENCE (4m height)
	PALISADE FENCE (3.4m height)
	SECURITY COLUMN (5No. each 6m height)
	BATTERY (48No. 12.9m x 2.44m x 2.59m)
	INVERTER (6No. 6.1m x 2.44m x 2.59m)
	SWITCHGEAR CONTAINER (6No. 12.2m x 2.44m x 3.0m)

Arcus Consultancy Services 7th Floor 144 West George Street Glasgow, G2 2HG Tel: +44 (0)141 221 9997 Fax: +44 (0)141 221 5610 www.arcusconsulting.co.uk

APPENDIX B – INFILTRATION TESTING TECHNICAL NOTE

Geo-Environmental Consultants

Arcus Consultancy Services Ltd IC, Swinegate Court East 3 Swinegate York Y018AJ

Our ref: P21/346/01/NH/KO

27 September 2021

LETTER REPORT ON SOAKAWAY TESTING AYR ROAD, COYLTON

Introduction

In September 2021, we were requested by Arcus Consultancy Services Limited (the Client), to undertake an assessment of the underlying soils below the proposed energy infrastructure development on a site near Coylton, Ayrshire, in relation to infiltration rates and soakaway design.

SKF Limited were commissioned to undertake the testing that took place on the 20th September 2021, comprising 2 No. soakaway tests. The intrusive investigations are now complete, and we would offer the following comments.

Ground Conditions

Works comprised 2 No. soakaway tests undertaken in the central and southern areas of the site to calculate indicative infiltration rates at the site. Two trial pits were excavated to a depth of 1.00 mbgl by mini-digger and utilised for soakaway testing in general accordance with BRE Special Digest 365. A location plan of soakaway positions, as provided by Arcus Consultancy Services Limited is included within Appendix A.

Trial pits TP01 and TP02 both recorded topsoil to a depth of 0.1 mbgl, granular soils were encountered to 0.55 m in TP01, underlain by stiff mottled grey and orange CLAY at the base of the trial pit. Trial pit TP02 encountered stiff brown sandy gravelly CLAY to 0.5m and stiff brown grey and orange sandy gravelly CLAY to the base of the trial pit at 1.0m depth.

Groundwater strikes were not recorded within either trial pits.

Soakaway Testing

Two soakaway tests (TP01 and TP02) were undertaken. The results of the soakaway tests are indicated in Table 01 below.

TABLE 01 - Soakaway Test Results									
Soakaway Test	Depth of Trial Pit (mbgl)	Water Level at Start (mbgl)	Water Level at End (mbgl)	Time Elapsed (minutes)	Infiltration Rate (m/s)				
TP01	1.00	0.41	0.59	135	NO RESULT				
TP02	1.00	0.43	0.45	140	NO RESULT				

TABLE 01 - Soakaway Test Results

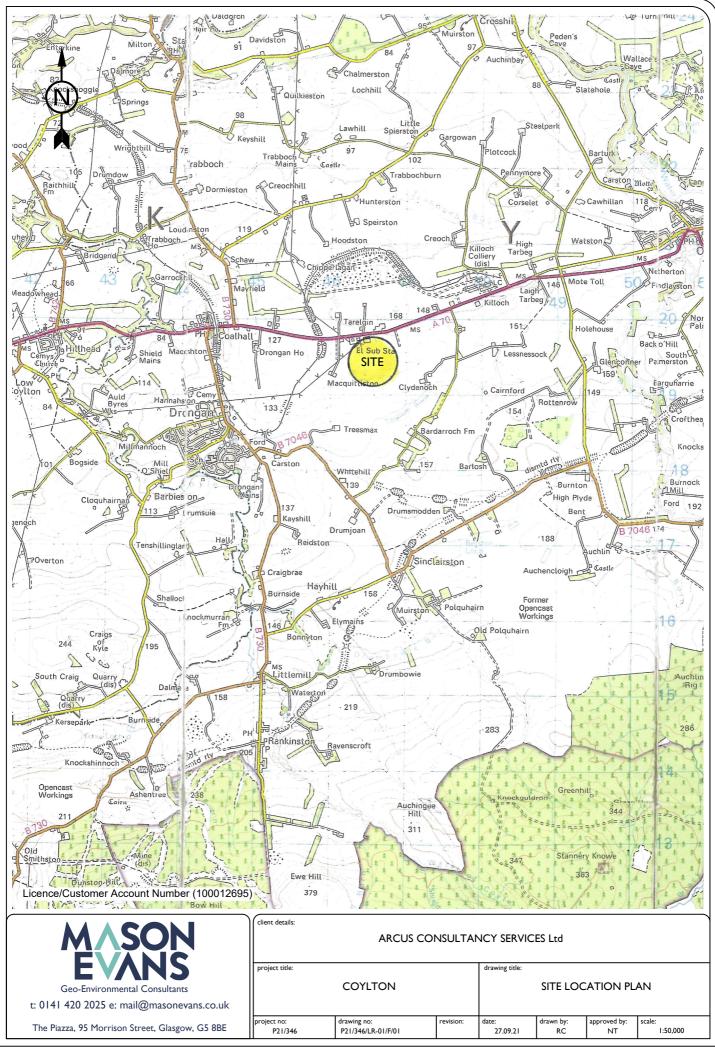
Soakaways TP01 and TP02 have not been able to have an infiltration rate calculated due to insufficient drainage within the pit. It is noted that the granular material encountered within location TP01 was recorded as 'clayey' and terminated over clay soils at 0.55m depth. It is anticipated that the high clay content within the soils is prohibiting infiltration.

Mason Evans Partnership Limited Registered Office:

The Piazza, 95 Morrison St, Glasgow, G5 8BE. Registered in Scotland No SC 156317 t. 0141 420 2025 e. mail@masonevans.co.uk www.masonevans.co.uk

Conclusions

An infiltration rate was not able to be calculated due to insufficient drainage within soakaway pits TP01 and TP02. Although a figure could not be determined at these positions, this demonstrates that the soils have a poor permeability, and soakaways would not be suitable for use within these areas.


We trust the above meets your current needs, but if there are any queries please do not hesitate to contact the undersigned.

Yours faithfully MASON EVANS PARTNERSHIP LIMITED

Neil Thomson Director

Enc

Appendix A Drawings Appendix B Trial Pit Logs Appendix C Soakaway Results

border: 277 × 190

SKF Ltd, Constablewood Estate, Brisbane Glen, Largs TEL: 01475 672409 or 07795 493892 FAX: 01475 672409

TRIAL PIT NO. TP01

Contract: AYR ROAD, COYLTON

Contract No: 6502

Status: FINAL

Client: MASON EVANS PARTNERSHIP

Pit Dimensions: 1.20X0.30

Co-ordinates E

Date: 20/09/2021

Equipment: VOLVO EC27C

Ν

Description of Strat	a Legen	d Depth	Level	Sampling	SPT Blows U Blows Hand Vane	Pipe
Ground Surface						
MADE GROUND: Topsoil / rough grass [GL-	0.10].	0.10				
Medium dense* brown clayey SAND and GR coarse and angular to sub rounded.occasion	AVEL. Gravel fine to al cobbles.	0.10				
		0.55				
Stiff brown mottled grey and orange sandy gr to coarse and angular to sub rounded. Occas	ravelly CLAY. Gravel fire sional cobbles.	0.55				
		1.00				
Water Strikes	Details			SYMBOLS	KEY	
Strike: Dry Flow: Stability: Stable Shoring: None Backfilling: Backfilled on completion Notes: SOAKAWAY TEST CARRIED OUT	Casing: Final Depth: 7	.00		LK NR DISTURBED * - ALL DISTURBED R L	NO RECOVERY ESTIMATED DEN	SITY

SKF Ltd, Constablewood Estate, Brisbane Glen, Largs TEL: 01475 672409 or 07795 493892 FAX: 01475 672409

TRIAL PIT NO. TP02

Contract: AYR ROAD, COYLTON

Contract No: 6502

Status: FINAL

Client: MASON EVANS PARTNERSHIP

Pit Dimensions: 1.20X0.30

Co-ordinates E

Date: 20/09/2021

Equipment: VOLVO EC27C

Ν

Description of Strat	a L	_egend	Depth	Level	Sampling	SPT Blows U Blows Hand Vane	Pipe
Ground Surface							
MADE GROUND: Topsoil / rough grass [GL-	0.10].		0.10				
Stiff brown sandy gravelly CLAY with occasion to coarse and angular to sub rounded.	onal cobbles. Gravel the		0.10				
			0.50				
Stiff brown mottled grey and orange sandy g to coarse and angular to sub rounded. Occas	ravelly CLAY. Gravel fire sional cobbles.						
			1.00				
Water Strikes	Details				SYMBOLS	KEV	
Strike: Dry Flow: Stability: Stable Shoring: None Backfilling: Backfilled on completion Notes: SOAKAWAY TEST CARRIED OUT		epth: 1.0			K NR - DISTURBED * - ALL DISTURBED	NO RECOVERY ESTIMATED DEN:	SITY

RESULTS OF SOAKAGE TEST

Water Level

(mAOD)

Water Level

(mBGL)

0.41

0.51

0.58

0.59

0.59

0.59

0.59

0.59

0.59

0.59

0.59

Time

(mins)

0.00

1.00

2.00

3.00

5.00

12.00

30.00

50.00

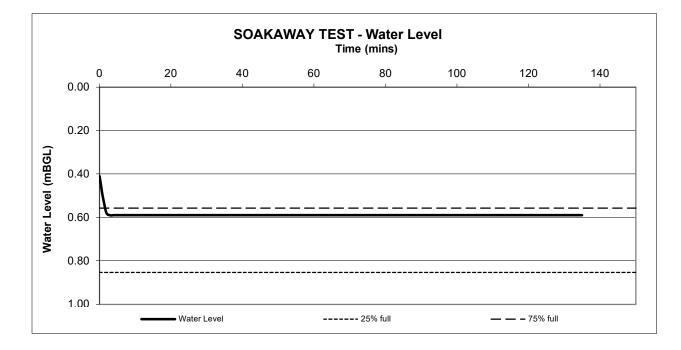
75.00

120.00

135.00

TEST PIT NO. TH

TP01


Contract Name:	AYR ROAD, COYLTON
Contract No.:	6502
Date:	20/09/2021
Weather:	DRY & SUNNY SPELLS
Time to fill pit:	2 MINS
Ground Level (mAOD)
Dimensions (m)	From graph (seconds)
Length: 1.20	tp75-25 =
Width: 0.30	·
Depth: 1.00	
Using formula $f = -a$	$\frac{V_{p75-25}}{p_{p50} \mathbf{X} \mathbf{t}_{p75-25}} \qquad \text{from BRE Digest 365}$

f = soil infiltration rate

Vp75-25 = volume of outflow between 75% and 25% eff. depth ap50 = mean surface area (pit sides to 50% eff. depth + base) tp75-25 = time for outflow between 75% and 25% eff. depth

INFILTRATION RATE (m/s)

f = N/A

RESULTS OF SOAKAGE TEST

Water Level

(mAOD)

Water Level

(mBGL)

0.43

0.44

0.44 0.44

0.44

0.44

0.44

0.44

0.44

0.44

0.45

Time

(mins)

0.00

1.00

2.00

3.00 4.00

5.00

20.00

45.00 65.00

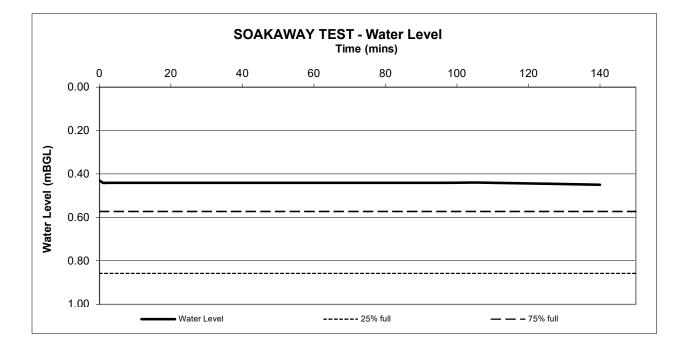
95.00

110.00

140.00

TEST PIT NO. TF

TP02

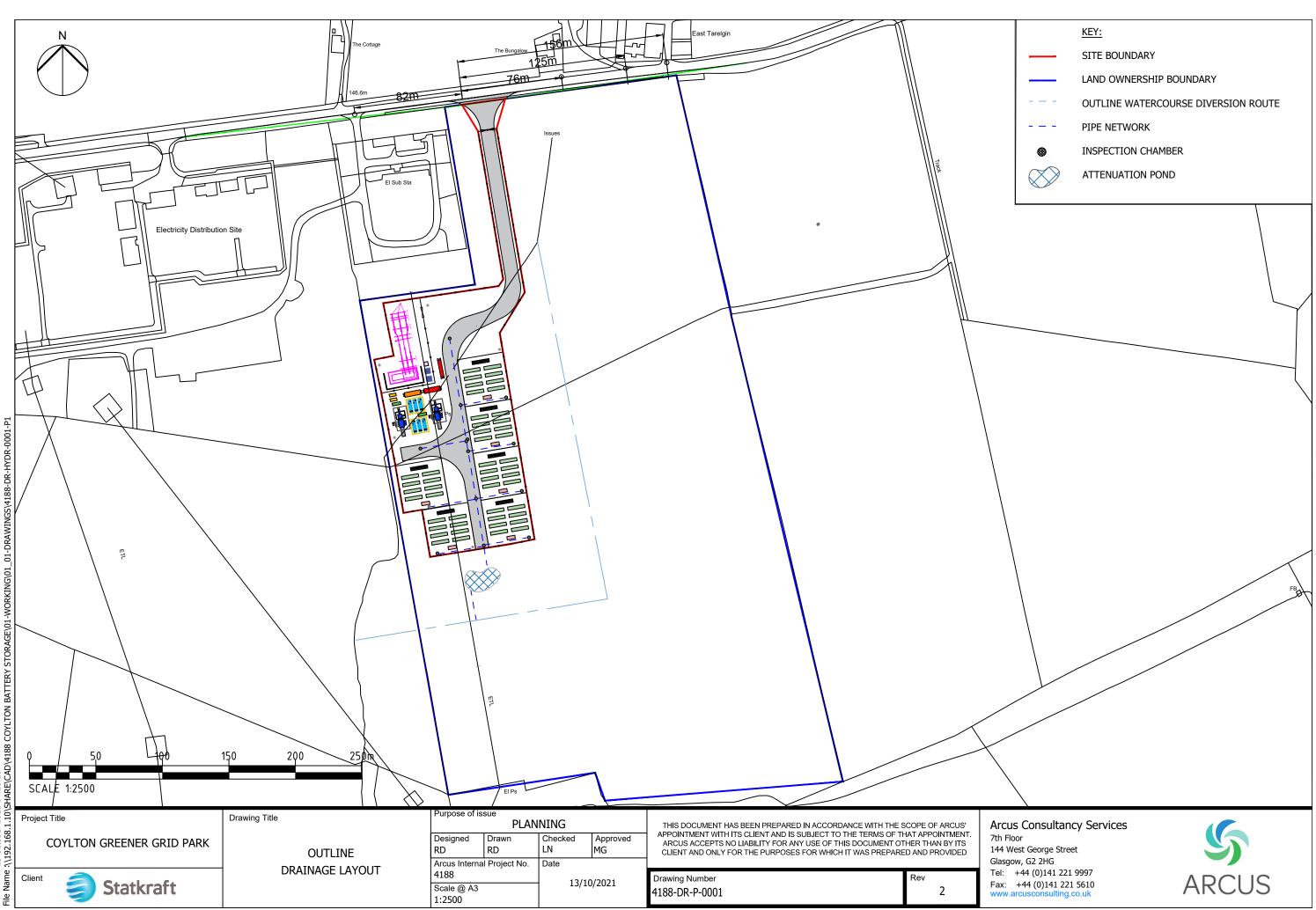

Contract N	lame:	AYR ROAD, C	OYLTON
Contract N	lo.:	6502	
Date:		20/09/2021	
Weather:		DRY & SUNNY	' SPELLS
Time to fil	l pit:	2 MINS	
Ground Le	evel (mAOD)	
Dimensior	ns (m)	Fr	om graph (seconds)
Length:	1.20	tp	75-25 =
Width:	0.30	-	
Depth:	1.00		
Using forn	-	V _{p75-25}	from BRE Digest 365

f = soil infiltration rate

Vp75-25 = volume of outflow between 75% and 25% eff. depth ap50 = mean surface area (pit sides to 50% eff. depth + base) tp75-25 = time for outflow between 75% and 25% eff. depth

INFILTRATION RATE (m/s)

f = N/A


APPENDIX C – ICP RURAL RUNOFF RATES

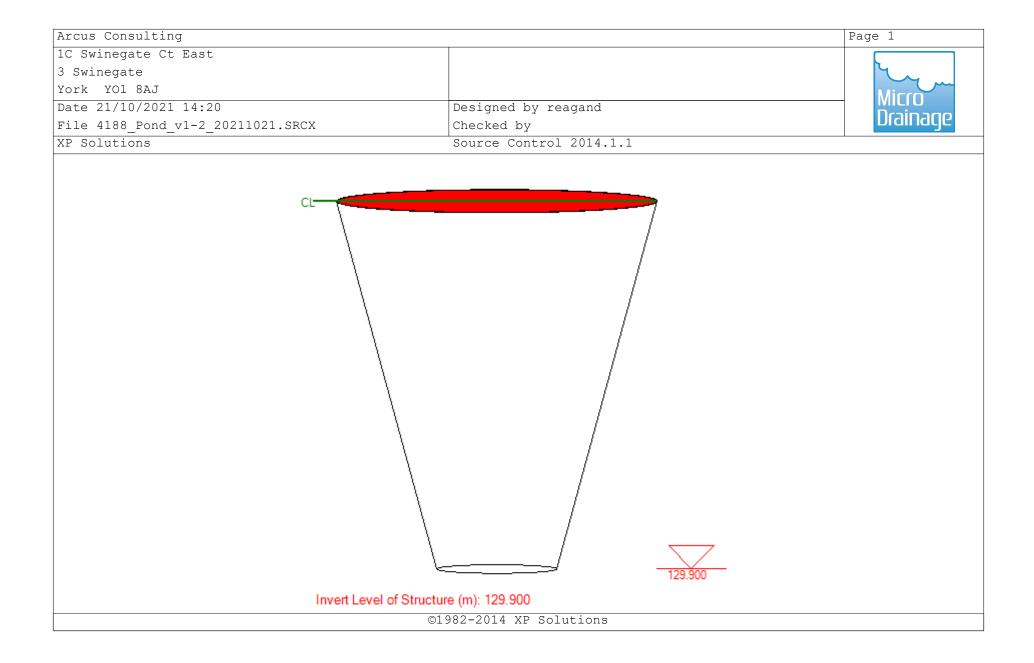
Arcus Consulting		Page 1
1C Swinegate Ct East		
3 Swinegate		4
York YO1 8AJ		Micco
Date 21/10/2021 14:07	Designed by reagand	
File 4188_Pond_v1-1_20211005	Checked by	Drainage
XP Solutions	Source Control 2014.1.1	
ICP SUD	S Mean Annual Flood	
	Input	
	rs) 200 Soil 0.450 ha) 0.380 Urban 0.000 mm) 1200 Region Number Region 2	
	Results 1/s	
	QBAR Rural 3.1 QBAR Urban 3.1	
	Q200 years 9.3	
	Q1 year 2.7 Q30 years 5.9 Q100 years 8.2	
	Q100 years 0.2	

©1982-2014 XP Solutions

APPENDIX D - OUTLINE DRAINAGE LAYOUT

Reproduced from Ordnance Survey digital map data © Crown copyright 2018. All rights reserved. License number 100048606

APPENDIX E – MICRODRAINAGE MODEL OUTPUTS


Arcus Consulti	ng						Page 1
1C Swinegate C	t East						
3 Swinegate							4
York YO1 8AJ							
Date 21/10/202	1 14:19	De	signe	d by re	agand		
File 4188 Pond			.ecked	-	agana		Drainago
XP Solutions				Control	2014	1 1	
XP SOLULIONS		50	urce	CONCLOT	2014.	1.1	
City	mmary of Resul	te for	200 17	oor Pot	urn Do	$rid (\pm 558)$	
<u>.5u</u>	<u>Mumary or Nesur</u>	101	<u>200 y</u>	ear net	urn re	1100 (155%)	-
	Storm	Max	Max	Max	Max	Status	
	Event	Level	Depth	Control	Volume		
		(m)	(m)	(l/s)	(m³)		
	15 min Summer	120 402	0 502	2 1	101 6	ОК	
	30 min Summer				121.6 145.4		
	60 min Summer				172.2	0 K	
	120 min Summer					Flood Risk	
	180 min Summer					Flood Risk	
	240 min Summer					Flood Risk	
	360 min Summer	130.854	0.954	3.1		Flood Risk	
	480 min Summer	130.868	0.968			Flood Risk	
	600 min Summer	130.872	0.972	3.1		Flood Risk	
	720 min Summer					Flood Risk	
	960 min Summer	130.883	0.983	3.1	249.8	Flood Risk	
	1440 min Summer	130.894	0.994	3.1	253.7	Flood Risk	
	2160 min Summer	130.893	0.993	3.1	253.5	Flood Risk	
	2880 min Summer				249.5	Flood Risk	
	4320 min Summer					Flood Risk	
	5760 min Summer					Flood Risk	
	7200 min Summer				172.1		
	8640 min Summer				141.1		
	10080 min Summer				112.0		
	15 min Winter 30 min Winter				136.6 163.5		
	So will willed	100.020	0.720	5.1	100.0	0 11	
	Storm	Rain			-	Time-Peak	
	Event	(mm/n	r) Vol	ume vo . ³) (olume (m³)	(mins)	
			(11		(
	15 min Summ			0.0	124.1	26	
	30 min Summ			0.0	149.4	41	
	60 min Summ			0.0	181.0	70	
	120 min Summ			0.0	218.1	128	
		~~ 20 /	96	0.0	243.1	188	
	180 min Summ					0.1.5	
	240 min Summ	er 23.0	88	0.0	262.7	246	
	240 min Summ 360 min Summ	er 23.0 er 17.1	88 62	0.0 0.0	262.7 292.8	364	
	240 min Summ 360 min Summ 480 min Summ	er 23.0 er 17.1 er 13.9	88 62 05	0.0 0.0 0.0	262.7 292.8 316.3	364 482	
	240 min Summ 360 min Summ 480 min Summ 600 min Summ	er 23.0 er 17.1 er 13.9 er 11.8	88 62 05 11	0.0 0.0 0.0 0.0	262.7 292.8 316.3 335.8	364 482 600	
	240 min Summ 360 min Summ 480 min Summ 600 min Summ 720 min Summ	er 23.0 er 17.1 er 13.9 er 11.8 er 10.3	88 62 05 11 36	0.0 0.0 0.0 0.0 0.0	262.7 292.8 316.3 335.8 352.5	364 482 600 674	
	240 min Summ 360 min Summ 480 min Summ 600 min Summ 720 min Summ 960 min Summ	er 23.0 er 17.1 er 13.9 er 11.8 er 10.3 er 8.5	88 62 05 11 36 70	0.0 0.0 0.0 0.0 0.0 0.0	262.7 292.8 316.3 335.8 352.5 389.4	364 482 600 674 796	
	240 min Summ 360 min Summ 480 min Summ 600 min Summ 720 min Summ 960 min Summ 1440 min Summ	er 23.0 er 17.1 er 13.9 er 11.8 er 10.3 er 8.5 er 6.5	88 62 05 11 36 70 80	0.0 0.0 0.0 0.0 0.0 0.0 0.0	262.7 292.8 316.3 335.8 352.5 389.4 444.6	364 482 600 674 796 1060	
	240 min Summ 360 min Summ 480 min Summ 600 min Summ 720 min Summ 960 min Summ	er 23.0 er 17.1 er 13.9 er 11.8 er 10.3 er 8.5 er 6.5 er 5.0	88 62 05 11 36 70 80 53	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	262.7 292.8 316.3 335.8 352.5 389.4 444.6 518.1	364 482 600 674 796 1060 1476	
	240 min Summ 360 min Summ 480 min Summ 600 min Summ 720 min Summ 960 min Summ 1440 min Summ 2160 min Summ	er 23.0 er 17.1 er 13.9 er 11.8 er 10.3 er 8.5 er 6.5 er 5.0 er 4.1	88 62 05 11 36 70 80 53 89	0.0 0.0 0.0 0.0 0.0 0.0 0.0	262.7 292.8 316.3 335.8 352.5 389.4 444.6	364 482 600 674 796 1060	
	240 min Summ 360 min Summ 480 min Summ 600 min Summ 720 min Summ 960 min Summ 1440 min Summ 2160 min Summ	er 23.0 er 17.1 er 13.9 er 11.8 er 10.3 er 8.5 er 6.5 er 5.0 er 4.1 er 3.1	88 62 05 11 36 70 80 53 89 16	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	262.7 292.8 316.3 335.8 352.5 389.4 444.6 518.1 572.7	364 482 600 674 796 1060 1476 1904	
	240 min Summ 360 min Summ 480 min Summ 600 min Summ 720 min Summ 960 min Summ 1440 min Summ 2160 min Summ 2880 min Summ	er 23.0 er 17.1 er 13.9 er 11.8 er 10.3 er 8.5 er 6.5 er 5.0 er 4.1 er 3.1 er 2.5	88 62 05 11 36 70 80 53 89 16 26	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	262.7 292.8 316.3 335.8 352.5 389.4 444.6 518.1 572.7 638.8	364 482 600 674 796 1060 1476 1904 2728	
	240 min Summ 360 min Summ 480 min Summ 600 min Summ 720 min Summ 960 min Summ 2160 min Summ 2880 min Summ 4320 min Summ	er 23.0 er 17.1 er 13.9 er 11.8 er 10.3 er 6.5 er 6.5 er 5.0 er 4.1 er 3.1 er 2.5 er 2.1	88 62 05 11 36 70 80 53 89 16 26 47	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	262.7 292.8 316.3 335.8 352.5 389.4 444.6 518.1 572.7 638.8 691.1	364 482 600 674 796 1060 1476 1904 2728 3536	
	240 min Summ 360 min Summ 480 min Summ 600 min Summ 720 min Summ 960 min Summ 2400 min Summ 2880 min Summ 4320 min Summ 5760 min Summ	er 23.0 er 17.1 er 13.9 er 11.8 er 10.3 er 6.5 er 6.5 er 5.0 er 4.1 er 3.1 er 2.5 er 2.1 er 1.8	88 62 05 11 36 70 80 53 89 16 26 47 80	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	262.7 292.8 316.3 352.5 389.4 444.6 518.1 572.7 638.8 691.1 734.1	364 482 600 674 796 1060 1476 1904 2728 3536 4336	
	240 min Summ 360 min Summ 480 min Summ 600 min Summ 720 min Summ 960 min Summ 2160 min Summ 2880 min Summ 4320 min Summ 5760 min Summ 7200 min Summ	er 23.0 er 17.1 er 13.9 er 11.8 er 10.3 er 6.5 er 6.5 er 5.0 er 4.1 er 3.1 er 2.5 er 2.1 er 1.8 er 1.6	88 62 05 11 36 70 80 53 89 16 26 47 80 80	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	262.7 292.8 316.3 352.5 389.4 444.6 518.1 572.7 638.8 691.1 734.1 771.1	364 482 600 674 796 1060 1476 1904 2728 3536 4336 5104	
	240 min Summ 360 min Summ 480 min Summ 600 min Summ 720 min Summ 960 min Summ 2160 min Summ 2880 min Summ 4320 min Summ 7200 min Summ 8640 min Summ 10080 min Summ	er 23.0 er 17.1 er 13.9 er 11.8 er 10.3 er 6.5 er 5.0 er 4.1 er 3.1 er 2.5 er 2.1 er 1.8 er 1.6	88 62 05 11 36 70 80 53 89 16 26 47 80 80 71	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	262.7 292.8 316.3 352.5 389.4 444.6 518.1 572.7 638.8 691.1 734.1 771.1 803.7	364 482 600 674 796 1060 1476 1904 2728 3536 4336 5104 5752	
	240 min Summ 360 min Summ 480 min Summ 600 min Summ 720 min Summ 960 min Summ 1440 min Summ 2160 min Summ 2880 min Summ 4320 min Summ 7200 min Summ 7200 min Summ 10080 min Summ 15 min Winte	er 23.0 er 17.1 er 13.9 er 11.8 er 10.3 er 6.5 er 5.0 er 4.1 er 3.1 er 2.5 er 2.1 er 1.8 er 1.6	88 62 05 11 36 70 80 53 89 16 26 47 80 80 71 82	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	262.7 292.8 316.3 335.8 352.5 389.4 444.6 518.1 572.7 638.8 691.1 734.1 771.1 803.7 139.0 167.2	364 482 600 674 796 1060 1476 1904 2728 3536 4336 5104 5752 26	

Arcus Cons 1C Swinega 3 Swinegat	te Ct East					Page 2
York YO1						
	/2021 14:19	Des	igned hy	v reagand		– Micro
				reagana		Drain
	Pond_v1-2_20211021.		cked by			
KP Solutic	ns	Sou	rce Cont	crol 2014	.1.1	
	<u>Summary of Result</u>	s for 2	200 year	Return P	<u>eriod (+55%)</u>	<u> </u>
					-	
	Storm Event	Max		ax Max	Status	
	Event	(m)	(m) (1	trol Volum /s) (m³)	e	
		(111)	(111) (1)	,s, (m)		
	60 min Winter 1	30.724 (0.824	3.1 193.	8 Flood Risk	
	120 min Winter 1				6 Flood Risk	
	180 min Winter 1				7 Flood Risk	
	240 min Winter 1				5 Flood Risk	
	360 min Winter 1				9 Flood Risk	
	480 min Winter 1				8 Flood Risk	
	600 min Winter 1 720 min Winter 1				4 Flood Risk 3 Flood Risk	
	960 min Winter 1				0 Flood Risk	
	1440 min Winter 1				0 Flood Risk	
	2160 min Winter 1				0 Flood Risk	
	2880 min Winter 1				1 Flood Risk	
	4320 min Winter 1	30.855 (0.955	3.1 239.	6 Flood Risk	
	5760 min Winter 1			3.1 197.	8 Flood Risk	
	7200 min Winter 1	.30.590 (0.690	3.1 151.	9 ОК	
	8640 min Winter 1			3.1 100.		
	10080 min Winter 1	.30.263 (0.363	3.1 67.	6 ОК	
	Storm	Rain	Flooded	Discharge	Time-Peak	
	Storm Event		Flooded Volume	Discharge Volume	Time-Peak (mins)	
				-		
	Event	(mm/hr)	Volume (m³)	Volume (m ³)	(mins)	
	Event 60 min Winter	(mm/hr)) Volume (m ³) 0.0	Volume (m ³) 202.7	(mins) 70	
	Event 60 min Winter 120 min Winter	(mm/hr) 63.649 38.334	 Volume (m³) 0.0 0.0 0.0 	Volume (m ³) 202.7 244.2	(mins) 70 126	
	Event 60 min Winter 120 min Winter 180 min Winter	(mm/hr) 63.649 38.334 28.496	Volume (m ³) 9 0.0 4 0.0 5 0.0	Volume (m ³) 202.7 244.2 272.3	(mins) 70 126 184	
	Event 60 min Winter 120 min Winter	(mm/hr) 63.649 38.334 28.499 23.088	Volume (m ³) 9 0.0 4 0.0 5 0.0 3 0.0	Volume (m ³) 202.7 244.2	(mins) 70 126 184 242	
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter	(mm/hr) 63.649 38.334 28.499 23.088 17.162	Volume (m ³) 9 0.0 4 0.0 5 0.0 3 0.0 2 0.0	Volume (m ³) 202.7 244.2 272.3 294.2	(mins) 70 126 184 242 358	
	60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter	(mm/hr) 63.649 38.334 28.490 23.088 17.162 13.905	Volume (m ³) 9 0.0 4 0.0 5 0.0 2 0.0 5 0.0	Volume (m ³) 202.7 244.2 272.3 294.2 327.9	(mins) 70 126 184 242 358 470	
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter	(mm/hr) 63.649 38.334 28.490 23.088 17.162 13.905 11.812 10.330	Volume (m³) 9 0.0 4 0.0 5 0.0 5 0.0 6 0.0 6 0.0 7 0.0 8 0.0 9 0.0 10 0.0 10 0.0	Volume (m ³) 202.7 244.2 272.3 294.2 327.9 354.2 375.9 394.6	(mins) 70 126 184 242 358 470 582 692	
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter	(mm/hr) 63.649 38.334 28.490 23.088 17.162 13.905 11.812 10.336 8.570	Volume (m³) 9 0.0 4 0.0 5 0.0 5 0.0 6 0.0 5 0.0 6 0.0 0 0.0 0 0.0	Volume (m ³) 202.7 244.2 272.3 294.2 327.9 354.2 375.9 394.6 435.3	(mins) 70 126 184 242 358 470 582 692 898	
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 960 min Winter 1440 min Winter	(mm/hr) 63.649 38.334 28.496 23.088 17.162 13.909 11.812 10.336 8.570 6.580	Volume (m³) 9 0.0 4 0.0 5 0.0 2 0.0 5 0.0 1 0.0 6 0.0 0 0.0 0 0.0	Volume (m ³) 202.7 244.2 272.3 294.2 327.9 354.2 375.9 394.6 435.3 469.0	(mins) 70 126 184 242 358 470 582 692 898 1126	
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter	(mm/hr) 63.649 38.334 28.496 23.088 17.162 13.905 11.812 10.336 8.570 6.588 5.052	Volume (m³) 9 0.0 4 0.0 6 0.0 8 0.0 2 0.0 5 0.0 1 0.0 0 0.0 0 0.0 3 0.0	Volume (m ³) 202.7 244.2 272.3 294.2 327.9 354.2 375.9 394.6 435.3 469.0 580.3	(mins) 70 126 184 242 358 470 582 692 898 1126 1600	
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter	(mm/hr) 63.649 38.334 28.496 23.088 17.162 13.905 11.812 10.336 8.570 6.580 5.055 4.185	Volume (m³) 9 0.0 4 0.0 5 0.0 2 0.0 5 0.0 1 0.0 6 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	Volume (m ³) 202.7 244.2 272.3 294.2 327.9 354.2 375.9 394.6 435.3 469.0 580.3 641.4	(mins) 70 126 184 242 358 470 582 692 898 1126 1600 2056	
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2800 min Winter 4320 min Winter	(mm/hr) 63.649 38.334 28.496 23.088 17.162 13.905 11.812 10.336 8.570 6.580 5.055 4.185 3.116	Volume (m³) 9 0.0 4 0.0 5 0.0 2 0.0 5 0.0 1 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	Volume (m ³) 202.7 244.2 272.3 294.2 327.9 354.2 375.9 394.6 435.3 469.0 580.3 641.4 715.3	(mins) 70 126 184 242 358 470 582 692 898 1126 1600 2056 2948	
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2800 min Winter 5760 min Winter	(mm/hr) 63.649 38.334 28.496 23.088 17.162 13.905 11.812 10.336 8.570 6.586 5.055 4.185 3.116 2.526	Volume (m³) 9 0.0 4 0.0 5 0.0 2 0.0 5 0.0 1 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	Volume (m ³) 202.7 244.2 272.3 294.2 327.9 354.2 375.9 394.6 435.3 469.0 580.3 641.4 715.3 774.1	(mins) 70 126 184 242 358 470 582 692 898 1126 1600 2056 2948 3816	
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2800 min Winter 4320 min Winter	(mm/hr) 63.649 38.334 28.496 23.088 17.162 13.905 11.812 10.336 6.586 5.055 4.185 3.116 2.526 2.14	Volume (m³) 9 0.0 4 0.0 5 0.0 2 0.0 5 0.0 1 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	Volume (m ³) 202.7 244.2 272.3 294.2 327.9 354.2 375.9 394.6 435.3 469.0 580.3 641.4 715.3	(mins) 70 126 184 242 358 470 582 692 898 1126 1600 2056 2948 3816 4688	
	60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 1440 min Winter 2160 min Winter 2800 min Winter 5760 min Winter 7200 min Winter	(mm/hr) 63.649 38.334 28.496 23.088 17.162 13.905 11.812 10.336 6.586 5.055 4.189 3.116 2.526 2.147 1.880	Volume (m³) 9 0.0 4 0.0 5 0.0 2 0.0 5 0.0 1 0.0 5 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	Volume (m ³) 202.7 244.2 272.3 294.2 327.9 354.2 375.9 394.6 435.3 469.0 580.3 641.4 715.3 774.1 822.2	(mins) 70 126 184 242 358 470 582 692 898 1126 1600 2056 2948 3816 4688 5200	
	60 min Winter 120 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 4320 min Winter 5760 min Winter 7200 min Winter 8640 min Winter	(mm/hr) 63.649 38.334 28.496 23.088 17.162 13.905 11.812 10.336 6.586 5.055 4.185 3.116 2.526 2.147 1.880	Volume (m³) 9 0.0 4 0.0 5 0.0 2 0.0 5 0.0 1 0.0 5 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	Volume (m ³) 202.7 244.2 272.3 294.2 327.9 354.2 375.9 394.6 435.3 469.0 580.3 641.4 715.3 774.1 822.2 863.7	(mins) 70 126 184 242 358 470 582 692 898 1126 1600 2056 2948 3816 4688 5200	
	60 min Winter 120 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 4320 min Winter 5760 min Winter 7200 min Winter 8640 min Winter	(mm/hr) 63.649 38.334 28.496 23.088 17.162 13.905 11.812 10.336 6.586 5.055 4.185 3.116 2.526 2.147 1.880	Volume (m³) 9 0.0 4 0.0 5 0.0 2 0.0 5 0.0 1 0.0 5 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	Volume (m ³) 202.7 244.2 272.3 294.2 327.9 354.2 375.9 394.6 435.3 469.0 580.3 641.4 715.3 774.1 822.2 863.7	(mins) 70 126 184 242 358 470 582 692 898 1126 1600 2056 2948 3816 4688 5200	
	60 min Winter 120 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 4320 min Winter 5760 min Winter 7200 min Winter 8640 min Winter	(mm/hr) 63.649 38.334 28.496 23.088 17.162 13.905 11.812 10.336 6.586 5.055 4.185 3.116 2.526 2.147 1.880	Volume (m³) 9 0.0 4 0.0 5 0.0 2 0.0 5 0.0 1 0.0 5 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	Volume (m ³) 202.7 244.2 272.3 294.2 327.9 354.2 375.9 394.6 435.3 469.0 580.3 641.4 715.3 774.1 822.2 863.7	(mins) 70 126 184 242 358 470 582 692 898 1126 1600 2056 2948 3816 4688 5200	
	60 min Winter 120 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 4320 min Winter 5760 min Winter 7200 min Winter 8640 min Winter	(mm/hr) 63.649 38.334 28.496 23.088 17.162 13.905 11.812 10.336 6.586 5.055 4.185 3.116 2.526 2.147 1.880	Volume (m³) 9 0.0 4 0.0 5 0.0 2 0.0 5 0.0 1 0.0 5 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	Volume (m ³) 202.7 244.2 272.3 294.2 327.9 354.2 375.9 394.6 435.3 469.0 580.3 641.4 715.3 774.1 822.2 863.7	(mins) 70 126 184 242 358 470 582 692 898 1126 1600 2056 2948 3816 4688 5200	
	60 min Winter 120 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 4320 min Winter 5760 min Winter 7200 min Winter 8640 min Winter	(mm/hr) 63.649 38.334 28.496 23.088 17.162 13.905 11.812 10.336 6.586 5.055 4.185 3.116 2.526 2.147 1.880	Volume (m³) 9 0.0 4 0.0 5 0.0 2 0.0 5 0.0 1 0.0 5 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	Volume (m ³) 202.7 244.2 272.3 294.2 327.9 354.2 375.9 394.6 435.3 469.0 580.3 641.4 715.3 774.1 822.2 863.7	(mins) 70 126 184 242 358 470 582 692 898 1126 1600 2056 2948 3816 4688 5200	
	60 min Winter 120 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 4320 min Winter 5760 min Winter 7200 min Winter 8640 min Winter	(mm/hr) 63.649 38.334 28.496 23.088 17.162 13.905 11.812 10.336 6.586 5.055 4.185 3.116 2.526 2.147 1.880	Volume (m³) 9 0.0 4 0.0 5 0.0 2 0.0 5 0.0 1 0.0 5 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	Volume (m ³) 202.7 244.2 272.3 294.2 327.9 354.2 375.9 394.6 435.3 469.0 580.3 641.4 715.3 774.1 822.2 863.7	(mins) 70 126 184 242 358 470 582 692 898 1126 1600 2056 2948 3816 4688 5200	
	60 min Winter 120 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 4320 min Winter 5760 min Winter 7200 min Winter 8640 min Winter	(mm/hr) 63.649 38.334 28.496 23.088 17.162 13.905 11.812 10.336 6.586 5.055 4.185 3.116 2.526 2.147 1.880	Volume (m³) 9 0.0 4 0.0 5 0.0 2 0.0 5 0.0 1 0.0 5 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	Volume (m ³) 202.7 244.2 272.3 294.2 327.9 354.2 375.9 394.6 435.3 469.0 580.3 641.4 715.3 774.1 822.2 863.7	(mins) 70 126 184 242 358 470 582 692 898 1126 1600 2056 2948 3816 4688 5200	

©1982-2014 XP Solutions

		Page 3
1C Swinegate Ct East		
3 Swinegate		4
York YO1 8AJ		
Date 21/10/2021 14:19	Designed by reagand	
File 4188 Pond v1-2 20211021		Drainago
XP Solutions	Source Control 2014.1.1	
<u> </u>	Rainfall Details	
Rainfall Mc		
Return Period (yea		
Site Locat C (1	ion GB 246950 619350 NS 46950 19350 km) -0.022	
D1 (1		
D2 (1		
D3 (1		
E (1 F (1		
Summer Sto		
Winter Sto		
Cv (Summ		
Cv (Wint Shortest Storm (mi		
Longest Storm (mi		
Climate Chang	re % +55	
T	ime Area Diagram	
Tc	otal Area (ha) 0.380	
Time (mins) Area	Time (mins) Area Time (mins) Area	
	From: To: (ha) From: To: (ha)	
0 4 0.127	4 8 0.127 8 12 0.127	

Arcus Consulting					Page 4
1C Swinegate Ct East					
3 Swinegate					
York YO1 8AJ					Mirro
Date 21/10/2021 14:19	Designe	d by reaga	nd		Dcainago
File 4188_Pond_v1-2_20211021		-			Diamage
XP Solutions	Source	Control 20	14.1.1		
	<u>Model De</u>	tails_			
Storage is (Online Cove:	r Level (m) 1	131.000		
Tan	<u>k or Pond</u>	Structure			
Inv	ert Level (m) 129.900			
Depth (m) i	Area (m²) De	epth (m) Area	a (m²)		
0.000	152.0	1.100	405.1		
<u>Hydro-Brak</u>	<u>e Optimum@</u>	Outflow C	<u>ontrol</u>		
Ur	it Referenc	e MD-SHE-008	2-3100-11	00-3100	
	ign Head (m			1.100	
Desig	n Flow (l/s Flush-Flo		Cal	3.1 culated	
		e Minimise			
	iameter (mm	,		82	
Inve Minimum Outlet Pipe D	rt Level (m			129.900 100	
Suggested Manhole E				1200	
Control	Points	Head (m) Fi	Low (l/s)		
Design Point	(Calculated)	1.100	3.1		
			3.1		
Mean Flow ove:		0.682	2.5 2.7		
	5				
The hydrological calculations have Hydro-Brake Optimum® as specified.	Should an	other type o	f control	device c	ther than a
Hydro-Brake Optimum® be utilised t invalidated	hen these s	torage routi	ng calcula	ations wi	ll be
Depth (m) Flow (1/s) Depth (m) F	Low (1/s) De	epth (m) Flow	w (1/s) De	epth (m)	Flow (l/s)
0.100 2.4 1.200	3.2	3.000	4.9	7.000	7.3
0.200 2.9 1.400	3.4	3.500	5.3	7.500	7.6
0.300 3.1 1.600 0.400 3.1 1.800	3.7 3.9	4.000 4.500	5.6 5.9	8.000 8.500	7.8 8.0
0.500 3.0 2.000	4.1	5.000	6.2	9.000	8.2
0.600 2.8 2.200	4.2	5.500	6.5	9.500	8.5
0.800 2.7 2.400 1.000 3.0 2.600	4.4 4.6	6.000 6.500	6.8 7.1		
1.000 3.0 2.000	1.0	0.000	/•±		
©198	2-2014 XP	Solutions			

APPENDIX F – POND MAINTENANCE SCHEDULE

Maintenance schedule	Required action	Typical frequency
Regular Maintenance	Remove litter and debris	Monthly (or as required)
	Cut the grass (in public areas)	Monthly (during growing season)
	Cut meadow grass	Half yearly (spring, before nesting season, and autumn)
	Inspect marginal and bankside vegetation and remove nuisance plants for first 3 years	Monthly (as start, then as required)
	Inspect inlets, outlets, bankside, structures, pipework etc for evidence of blockage and/or physical damage	Monthly
	Inspect water body for signs of poor water quality	(Monthly (May – October)
	Inspect silt accumulation rates in any forebay and in main body of the pond and establish appropriate removal frequencies; undertake contamination testing on some build up has occurred, to inform management and disposal options	Half yearly
	Checky any mechanical devices (e.g., penstocks)	Half yearly
	Hand cut submerged and emergent aquatic plants (at minimum of 0.1 m above pond base; include max 25% of pond surface)	Annually
	Remove 25% of bank vegetation from water's edge to a minimum of 1 m above water level	Annually
	Tidy all dead growth (Scrub clearance) before start of growing season (Note: tree maintenance usually part of overall landscape management contract)	Annually
	Remove sediment from any forebay	Every 1-5 years, or as required
	Remove sediment and planting from one quadrant of the main body of ponds without sediment forebays	Every 5 years, or as required
Occasional Maintenance	Remove sediment from the main body of big ponds when pool volume is reduced by 20%	With effective pre- treatment, this will only be required rarely, e.g., every 25-50 years
Remedial actions	Repair erosion or other damage	As required
	Replate where necessary Aerate pond when signs of eutrophication are detected	As required As required
	Realign rip-rap or repair other damage	As required
	Repair/rehabilitate inlets, outlet, overflows and vents	As required

Long-term Maintenance Schedule for the Attenuation Pond¹

 $^{^{\}rm 1}$ Based on Table 23.1 - Operation and maintenance requirements for attenuation pond and wetlands of the SuDS Manual