Appendix 6.1 Collision Risk Analysis

Contents

Introduction 1
Summary of hours watched 3
Collision risk analysis 9
Greylag goose 2016 10
Greylag goose 2017/18 18
Red-throated diver 2016 26
Red-throated diver 2018 35
Great skua 2016 45
Arctic skua 2016 57
Arctic skua 2018 65
Arctic tern 2016 73
Arctic tern 2018 81
Fulmar 2016 89
Fulmar 2018 97
Curlew 2016 105
Curlew 2018 113
Whimbrel 2018 121
Golden plover 2016 129
Golden plover 2018 137
References 145

This page is intentionally blank.

Appendix 6.1 Collision Risk Analysis

Introduction

Species selected for collision risk analysis

Worked collision risk analysis for nine species (greylag goose, red-throated diver, curlew, whimbrel, golden plover, great skua, Arctic skua, Arctic tern and fulmar) is contained in this Appendix.

Vantage point watches were carried out in the breeding season of 2016, the winter season of 2017/18 and the breeding season of 2018. Only breeding season flight data and observation time has been analysed since many species are not present in the winter, or do not use the airspace over the Site frequently during the winter period. For two species, great skua and whimbrel, only a single breeding season is analysed. Great skua was recorded irregularly during autumn 2017, and likely to have involved dispersing or wandering individuals that are not part of the local breeding population. Whimbrel flights were recorded infrequently during the work, and only two flights at collision risk height were recorded during the 2016 VP work. Collision modelling has been undertaken for the 2018 data; however, insufficient flight activity was recorded for whimbrel in 2016 to complete a meaningful analysis, and therefore, collision risk based on 2016 data has not been modelled.

The approach to collision risk analysis
The collision risk analysis follows the Scottish Natural Heritage (SNH) guidance note on calculating a theoretical collision risk (SNH, 2000). The calculations used in the guidance note are derived from Band et al., (2007). The calculations provide a collision risk based on birds undertaking no avoidance action. An avoidance factor is therefore applied to the output of the Band calculation, and this has been derived from recommended avoidance rates in SNH (2018). Each worked collision risk model in this Technical Appendix follows the calculations set out in SNH (2000).

The collision risk calculation determines the number of birds colliding per annum by multiplying the number of birds flying through the turbine rotors and the probability of a bird being hit. SNH (2000) identifies two approaches to determine the number of birds flying through the rotors; these are: the 'predictable flight' model, and the 'random flight' model.

Collision risk has been calculated using the 'predictable' flight model for greylag goose (which tends to fly in flocks and often on relatively direct flight paths) and the 'random' flight model for the other species as this is more appropriate.

For some species, a proportion of flights also fit the 'predictable' model; this is the case for breeding adult redthroated divers that consistently make direct flights between a nest and foraging area. However, the majority of such direct fights observed during survey work did not pass through the proposed turbine array, and tended to occur between lochans at the periphery of the Proposed Development footprint, away from the Site to the sea. It can be seen from Figure 6.6 that the majority of flights within the vicinity of the proposed turbine locations are typically wheeling flights, with direct flights typically occurring around Gloup Voe (in the centre-north of the Site), near Kussa Waters (beyond the north-eastern corner of the Site), near to the western coastline of Yell, and at Dalsetter (beyond the south-eastern corner of the Site).

Parameters used in the random flight model

In applying the random flight model, a "flight risk volume" has been calculated based on the area occupied by the combined effective visible area from VPs 1, 2, 3 and 6, multiplied by the height of the turbines. The combined visible area is shown on Figure 6.1. Flight data obtained from VPs 4 and 5 (as presented in the 2019 EIA Report) were excluded from the model. VP 5 did not overlook any of the proposed turbine locations in the 2020 Layout,
and VP 4 only captured proposed turbine 16 (which is also overlooked by VP 3) at the edge of its viewshed. Inclusion of VPs 4 and 5 into the model is likely to have skewed the collision risk outcome by enlarging the flight risk volume disproportionately whilst not providing information about at risk flights.

The calculated flight risk volume is presented in "Step 1" under the "Method" sections of each worked collision risk analysis. This was calculated using a maximum blade height of 200 m and the Site area calculated using ArcGIS. The Site area is illustrated in Figure 6.1.

Parameters used in the predictable flight model

For the predictable flight model (only applied to greylag goose here) a "risk window" has been calculated based on the width of the combined visible area from VPs $1,2,3$ and 6 at the widest section perpendicular to the general flight direction. This width is measured roughly along a theoretical line through proposed turbines 5 and 25 , and is presented on the first page of the greylag goose worked collision risk analysis.

Parameters used in either model

The total observation time entered into the analysis is 144 hours per season. This is based on 36 hours of observation being completed during each season for each of VPs $1,2,3$ and 6 . Collision risk analysis has been undertaken separately for each season.

For those species that do not occur frequently outside of the breeding bird season, the period of the year over which the species are likely to be present within the airspace over the Proposed Development has been entered into the model as April to August inclusive. The mean daylight hours for Shetland ${ }^{1}$ in each month has been used to provide a total duration for which each species is active. As all of the species for which collision risk analysis has been conducted are diurnal, only 5% of the total night time hours have been included in the analysis.

All flights recorded at > 40 m during the survey work have been defined as being at collision risk height and entered into the model. SNH (2000) guidance indicates that "best results will be based on observational data about flight heights, such as will enable informed estimate of the proportion of flights at a level which may collide with windfarm rotors." Whilst the flight height bands used in the field were well defined, and allowed exclusion of below collision risk ($<40 \mathrm{~m}$) flights from the model, the survey data did not allow exclusion of flights that occurred above the maximum tip height of the proposed turbines. This is because the maximum tip height of proposed turbines has changed during the course of survey work, and the maximum height band used in the field captured both at and above collision risk heights. To allow for this, all flights $>40 \mathrm{~m}$ have been entered in to the model. This has resulted in a slight overestimation of collision risk.

Estimates of bird size and flight speed for each species have been used for calculating the probability of collision. There are numerous sources of information on flight speed in birds, but few of these present figures that correspond, and birds can vary their speed according to what they are doing (e.g. soaring, gliding or pursuing prey / trying to evade capture). Precautionary (low) flight speeds are presented for each species modelled (based on data presented in Bruderer \& Boldt, 2001). Slower speed makes birds less likely to avoid turning blades by chance (i.e. through flying through the rotor swept area without taking avoiding action).

The size of birds (total length and length of the wing) is also precautionary in each case, and is based on the largest given measurement for the species concerned in Baker (2016). Larger size also makes avoiding rotating blades by chance less likely. Only those flights that included time at collision risk height and that passed within 280 m (to account for the sweep of the blades $(80 \mathrm{~m})$ and observer error (200 m , as recommended in the relevant guidance (SNH, 2000; Band et al, 2007) were entered into the model. The flight times/ height and durations are provided for each species in the methods.

[^0]
Summary of hours watched

Table 1 - VP 1 survey dates, times, and meteorological data.

Date	Start time	Stop Time	Time (Hrs)	Wind Direction	Wind speed 2	Cloud cover ${ }^{3}$	Rain ${ }^{4}$	Snow ${ }^{5}$	Frost ${ }^{6}$
04-Apr-16	12:25	15:25	3	SSE	3	8	0	0	0
04-Apr-16	16:55	19:55	3	SE	2	7	0	0	0
22-May-16	04:40	07:40	3	W	5	7	0	0	0
22-May-16	08:10	11:10	3	W	5	5	0	0	0
06-Jun-16	16:00	19:00	3	NE	3	0	0	0	0
06-Jun-16	19:30	22:30	3	NE	2	0	0	0	0
19-Jul-16	15:35	18:35	3	W	3	8	0	0	0
19-Jul-16	19:08	22:08	3	E	3	4	0	0	0
04-Aug-16	15:05	18:05	3	N	5	8	0	0	0
04-Aug-16	18:35	21:35	3	N	4	8	0	0	0
25-Aug-16	05:40	08:40	3	S	1	3	0	0	0
25-Aug-16	09:10	12:10	3	SE	1	6	0	0	0
04-Apr-16	12:25	15:25	3	SSE	3	8	0	0	0
04-Apr-16	16:55	19:55	3	SE	2	7	0	0	0
22-May-16	04:40	07:40	3	W	5	7	0	0	0
22-May-16	08:10	11:10	3	W	5	5	0	0	0
06-Jun-16	16:00	19:00	3	NE	3	0	0	0	0
06-Jun-16	19:30	22:30	3	NE	2	0	0	0	0
19-Jul-16	15:35	18:35	3	W	3	8	0	0	0
19-Jul-16	19:08	22:08	3	E	3	4	0	0	0
04-Aug-16	15:05	18:05	3	N	5	8	0	0	0
04-Aug-16	18:35	21:35	3	N	4	8	0	0	0
25-Aug-16	05:40	08:40	3	S	1	3	0	0	0
25-Aug-16	09:10	12:10	3	SE	1	6	0	0	0
26-Sep-17	12:20	15:20	3	SSE	6	7	0	0	0
26-Sep-17	15:51	18:51	3	SSE	6	8	0	0	0
05-Oct-17	07:19	10:19	3	NW	6	8	3	0	0
05-Oct-17	10:49	13:49	3	NW	5	8	3	0	0
02-Nov-17	09:30	12:30	3	N	1	7	0	0	0
02-Nov-17	13:03	16:04	3	W	3	7	0	0	0
12-Dec-17	11:45	14:45	3	SW	3	5	0	0	2
15-Jan-18	09:40	12:40	3	S	5	6	0	0	0
21-Feb-18	07:20	10:20	3	S	5	7	0	0	1
22-Feb-18	10:55	13:55	3	S	5	6	0	0	1

[^1]

Table 2 - VP 2 survey dates, times, and meteorological data.

Date	Start time	Stop Time	Time (Hrs)	Wind Direction	Wind speed	Cloud cover	Rain	Snow	Frost
05-Apr-16	$13: 30$	$16: 30$	3	NNW	3	8	0	0	0
05-Apr-16	$17: 00$	$20: 00$	3	NW	3	8	0	0	0
03-May-16	$04: 55$	$07: 55$	3	SSW	5	4	0	0	0
03-May-16	$08: 35$	$11: 35$	3	SSW	5	5	0	0	0
01-Jun-16	$15: 50$	$18: 50$	3	N	5	8	0	0	0
01-Jun-16	$19: 20$	$22: 20$	3	N	4	8	0	0	0
18-Jul-16	$04: 15$	$07: 15$	3	E	1	4	0	0	0
18-Jul-16	$07: 45$	$10: 45$	3	E	18	0	0	0	
03-Aug-16	$15: 05$	$18: 05$	3	ENE	5	8	5	0	0
03-Aug-16	$18: 35$	$21: 35$	3	ENE	5	8	0	0	
23-Aug-16	$05: 40$	$08: 40$	3	W	2	8	0	0	0
23-Aug-16	$09: 10$	$12: 10$	3	WNW	1	8	0	0	0
05-Apr-16	$13: 30$	$16: 30$	3	NNW	3	8	0	0	
05-Apr-16	$17: 00$	$20: 00$	3	NW	3	8	0	0	0
03-May-16	$04: 55$	$07: 55$	3	SSW	5	4	0	0	0
03-May-16	$08: 35$	$11: 35$	3	SSW	5	5	0	0	0
01-Jun-16	$15: 50$	$18: 50$	3	N	5	8	0	0	
01-Jun-16	$19: 20$	$22: 20$	3	N	4	8	0	0	
18-Jul-16	$04: 15$	$07: 15$	3	E	10	0	0	0	0
18-Jul-16	$07: 45$	$10: 45$	3	E	1	0	0	0	0

Date	Start time	Stop Time	Time (Hrs)	Wind Direction	Wind speed	Cloud cover	Rain	Snow	Frost
03-Aug-16	15:05	18:05	3	ENE	5	8	5	0	0
03-Aug-16	18:35	21:35	3	ENE	5	8	5	0	0
23-Aug-16	05:40	08:40	3	W	2	8	0	0	0
23-Aug-16	09:10	12:10	3	WNW	1	8	0	0	0
21-Sep-17	16:07	19:07	3	W	1	8	2	0	0
26-Sep-17	08:30	11:30	3	SSE	6	8	0	0	0
04-Oct-17	07:19	10:19	3	W	6	7	4	0	0
04-Oct-17	10:49	13:49	3	W	5	5	0	0	0
05-Nov-17	09:26	12:26	3	NW	5	6	3	0	0
05-Nov-17	12:56	15:56	3	NW	6	5	3	0	0
15-Dec-17	09:45	12:45	3	NW	6	4	0	0	0
13-Jan-18	11:30	14:30	3	SSE	5	7	0	0	0
18-Feb-18	07:35	10:35	3	WSW	4	7	0	0	1
18-Feb-18	11:05	14:05	3	SW	3	7	0	0	0
09-Mar-18	07:25	10:25	3	SE	4	6	0	1	0
09-Mar-18	10:55	13:55	3	SE	4	5	0	1	0
04-Apr-18	13:10	16:10	3	W	2	5	0	0	0
04-Apr-18	16:50	19:50	3	W	2	1	0	0	0
02-May-18	14:10	17:10	3	SW	5	8	3	0	0
17-May-18	04:20	07:20	3	W	3	5	0	0	0
08-Jun-18	08:50	11:50	3	NE	3	8	0	0	0
08-Jun-18	12:20	15:20	3	NE	3	8	0	0	0
02-Jul-18	19:30	22:30	3	SW	4	8	0	0	0
02-Jul-18	16:00	19:00	3	SW	4	6	0	0	0
02-Aug-18	10:00	13:00	3	S	4	8	0	0	0
02-Aug-18	13:30	16:30	3	WSW	4	7	0	0	0
15-Aug-18	05:10	08:10	3	SW	3	8	2	0	0
15-Aug-18	08:40	11:40	3	S	4	8	0	0	0
Total duration (Hrs)	Breedi Winte Breedi	7/18 18	36 36 36						

Table 3 - VP 3 survey dates, times, and meteorological data.

Date	Start time	Stop Time	Time (Hrs)	Wind Direction	Wind speed	Cloud cover	Rain	Snow	Frost
06-Apr-16	3	$13: 35$	$16: 35$	3	WSW	3	6	0	0
06-Apr-16	3	$17: 05$	$20: 05$	3	W	2	7	0	0
04-May-16	3	$04: 55$	$07: 55$	3	S	4	8	0	0
04-May-16	3	$08: 25$	$11: 25$	3	S	4	8	3	0
02-Jun-16	3	$15: 55$	$18: 55$	3	NE	6	8	0	0
02-Jun-16	3	$19: 25$	$22: 25$	3	NE	6	3	0	0

Date	Start time	Stop Time	Time (Hrs)	Wind Direction	Wind speed	Cloud cover	Rain	Snow	Frost
22-Jul-16	3	04:19	07:19	3	S	1	2	0	0
22-Jul-16	3	07:50	10:50	3	SE	2	2	0	0
10-Aug-16	3	14:45	17:45	3	W	3	2	0	0
10-Aug-16	3	18:15	21:15	3	WSW	2	2	0	0
31-Aug-16	3	05:35	08:35	3	SSW	5	2	0	0
31-Aug-16	3	09:25	12:25	3	SW	5	7	0	0
06-Apr-16	3	13:35	16:35	3	WSW	3	6	0	0
06-Apr-16	3	17:05	20:05	3	W	2	7	0	0
04-May-16	3	04:55	07:55	3	S	4	8	0	0
04-May-16	3	08:25	11:25	3	S	4	8	3	0
02-Jun-16	3	15:55	18:55	3	NE	6	8	0	0
02-Jun-16	3	19:25	22:25	3	NE	6	3	0	0
22-Jul-16	3	04:19	07:19	3	S	1	2	0	0
22-Jul-16	3	07:50	10:50	3	SE	2	2	0	0
10-Aug-16	3	14:45	17:45	3	W	3	2	0	0
10-Aug-16	3	18:15	21:15	3	WSW	2	2	0	0
31-Aug-16	3	05:35	08:35	3	SSW	5	2	0	0
31-Aug-16	3	09:25	12:25	3	SW	5	7	0	0
20-Sep-17	3	12:40	15:40	3	SE	3	7	0	0
20-Sep-17	3	16:10	19:10	3	SE	3	7	3	0
07-Oct-17	3	11:54	14:54	3	NE	3	8	0	0
07-Oct-17	3	15:24	18:24	3	N	3	7	0	0
06-Nov-17	3	07:40	10:40	3	S	4	8	0	0
06-Nov-17	3	11:10	14:10	3	S	5	8	0	0
11-Dec-17	3	11:50	14:50	3	WNW	4	7	1	0
11-Jan-18	3	12:15	15:15	3	NW	2	1	0	0
16-Feb-18	3	12:20	15:20	3	SW	5	5	0	0
19-Feb-18	3	07:30	10:30	3	ESE	6	5	0	0
06-Mar-18	3	09:10	12:10	3	NE	4	7	3	1
06-Mar-18	3	12:40	15:40	3	NE	3	7	3	1
03-Apr-18	3	13:00	16:00	3	E	4	8	3	0
03-Apr-18	3	16:45	19:45	3	NE	4	6	0	0
04-May-18	3	13:40	14:40	1	SW	5	8	3	0
18-May-18	3	04:10	07:10	3	SE	1	1	0	0
18-May-18	3	07:40	09:40	2	SE	2	1	0	0
07-Jun-18	3	10:00	13:00	3	NE	3	8	0	0
07-Jun-18	3	13:30	16:30	3	NE	3	8	0	0
09-Jul-18	3	19:30	22:30	3	SW	1	5	0	0
09-Jul-18	3	15:50	19:00	3	NW	3	4	0	0
31-Jul-18	3	12:15	15:15	3	S	5	5	0	0
31-Jul-18	3	15:45	18:45	3	ESE	4	1	0	0
20-Aug-18	3	05:15	08:15	3	W	2	7	0	0

Date	Start time	Stop Time	Time (Hrs)	Wind Direction	Wind speed	Cloud cover	Rain	Snow	Frost
Total duration (Hrs)	Breeding 2016		36						
	Winter 2017/18		36						
	Breeding 2018		36						

Table 4 - VP 6 survey dates, times, and meteorological data.

Date	Start time	Stop Time	Time (Hrs)	Wind Direction	Wind speed	Cloud cover	Rain	Snow	Frost
11-Apr-16	13:45	16:45	3	E	3	4	0	0	0
11-Apr-16	17:15	20:15	3	NE	3	4	0	0	0
27-May-16	05:00	08:00	3	ENE	5	8	0	0	0
27-May-16	09:00	12:00	3	ENE	4	8	4	0	0
07-Jun-16	16:00	19:00	3	N	4	8	0	0	0
07-Jun-16	19:30	22:30	3	N	3	8	0	0	0
02-Aug-16	04:50	07:50	3	NNW	3	8	0	0	0
02-Aug-16	08:20	11:20	3	NNW	3	8	0	0	0
12-Aug-16	14:40	17:40	3	WNW	3	8	0	0	0
12-Aug-16	18:10	21:10	3	W	4	8	0	0	0
24-Aug-16	13:15	16:15	3	NNW	3	8	0	0	0
24-Aug-16	16:45	19:45	3	W	2	7	0	0	0
11-Apr-16	13:45	16:45	3	E	3	4	0	0	0
11-Apr-16	17:15	20:15	3	NE	3	4	0	0	0
27-May-16	05:00	08:00	3	ENE	5	8	0	0	0
27-May-16	09:00	12:00	3	ENE	4	8	4	0	0
07-Jun-16	16:00	19:00	3	N	4	8	0	0	0
07-Jun-16	19:30	22:30	3	N	3	8	0	0	0
02-Aug-16	04:50	07:50	3	NNW	3	8	0	0	0
02-Aug-16	08:20	11:20	3	NNW	3	8	0	0	0
12-Aug-16	14:40	17:40	3	WNW	3	8	0	0	0
12-Aug-16	18:10	21:10	3	W	4	8	0	0	0
24-Aug-16	13:15	16:15	3	NNW	3	8	0	0	0
24-Aug-16	16:45	19:45	3	W	2	7	0	0	0
27-Sep-17	12:18	15:18	3	SE	6	8	0	0	0
27-Sep-17	15:48	18:48	3	SE	6	7	0	0	0
06-Oct-17	07:21	10:21	3	NW	5	8	3	0	0
06-Oct-17	10:51	13:51	3	NW	4	8	0	0	0
07-Nov-17	09:20	12:20	3	W	2	8	3	0	0
07-Nov-17	12:51	15:51	3	SW	3	8	0	0	0
14-Dec-17	10:45	13:45	3	E	3	7	1	0	1
18-Jan-18	11:00	14:00	3	W	4	5	0	0	0
21-Feb-18	07:25	10:25	3	NW	3	2	0	0	1
21-Feb-18	10:55	13:55	3	NW	2	3	0	0	1

Date	Start time	Stop Time	Time (Hrs)	Wind Direction	Wind speed	Cloud cover	Rain	Snow	Frost
31-Mar-18	11:30	14:30	3	NNW	5	4	0	0	1
31-Mar-18	15:00	18:00	3	WNW	4	3	0	0	1
10-Apr-18	13:10	16:10	3	S	2	8	0	0	0
10-Apr-18	16:50	19:50	3	S	2	7	0	0	0
15-May-18	04:20	07:20	3	SW	1	0	0	0	0
15-May-18	07:50	10:50	3	SE	4	0	0	0	0
12-Jun-18	10:00	13:00	3	W	3	6	0	0	0
12-Jun-18	13:30	16:30	3	NW	4	8	0	0	0
05-Jul-18	19:30	22:30	3	W	4	8	0	0	0
05-Jul-18	16:00	19:00	3	W	4	3	0	0	0
07-Aug-18	09:30	12:30	3	SW	3	8	1	0	0
07-Aug-18	13:00	16:00	3	S	3	8	1	0	0
24-Aug-18	05:15	08:15	3	NW	2	6	0	0	0
24-Aug-18	08:45	11:45	3	NW	4	7	2	0	0
Total duration (Hrs)	Breeding 2016		36						
	Winter 2017/18		36						
	Breeding 2018		36						

Collision Risk Analysis

[Overleaf]

Bird Dimensions

Species

length (m)
wing span (m)
Greylag Goose
0.82
speed (m/sec)
Turbine Dimensions
Height of tower (m) 123
Blade length (m) 77
Max blade height (m) 46
Depthade height (m)
3.651781003

Wind Farm Dimensions

No of turbines	23
Site width (m)	5496

Turbine Specifications
K: [1D or [3D] (0 or 1)
NoBlades
MaxChord
Pitch (degrees)
Rotation period

Flight Characteristics
Flapping (0) or gliding (+1)
0

Survey Data
Total survey time (hours)
Period when Greylag Goose

= data input required
 = model calculates value

Sources of speed and dimension information: Bruderer \& Boldt (2001); BTO Bird Facts

Note, the maximum height of turbines $5,16,19,20,24,25,26,27$ and 28 is lower, at 180 m

The width is equal to the width (perpendicular to the general flight direction of geese) across the total visible area (at a minimum 30 m above ground level) from vantage points 1, 2, 3 and 6.
The extent of the visible area is shown on Figure 6.1

Night adjustment
What percentage of the night is the target species active:
5 \%

Type in the number of days in each month where the target species is present within the site

Jan	Feb	Mar		Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
31	28		31	30	31	30	31	31	30	31	30	31

Enter the date of each record, the time the bird(s) was recorded in the collision risk area and the number of birds on a separate Bird occupancy is automatically calculated.

Date	Time observed (seconds)	Number of birds	Bird Occupancy in flight risk volume
03/05/2016	105	3	315 (the time in seconds is
03/05/2016	30	1	30 aggregated time for each
03/05/2016	15	2	30 species modelled)
03/05/2016	70	2	140
22/05/2016	135	8	1080
22/05/2016	120	1	120
22/05/2016	60	2	120
22/05/2016	150	3	450
22/05/2016	15	1	15
22/05/2016	30	2	60
22/05/2016	135	2	270
22/05/2016	45	1	45
27/05/2016	110	4	440
27/05/2016	55	2	110
27/05/2016	30	2	60
01/06/2016	30	3	90
01/06/2016	45	4	180
06/06/2016	60	1	60
06/06/2016	75	2	150
06/06/2016	70	8	560
06/06/2016	120	3	360
06/06/2016	120	1	120
10/08/2016	185	1	185
23/08/2016	10	2	20
Total	1820	61	5010

Method 2 - Regular flights through windfarm

(to be used for birds that fly across the site using the same flight path)
$=$ data input required
$=$ model calculates value

Step 1

Step 2
Go to Data Input
Input data about the species that is being assessed - body length, wing span and flight speed
Input data on turbine dimensions
Input data on wind farm area
Input data on turbine dimensions and specification
Input all vantage point data for the species that is being assessed - number of birds and flight time within the study area Input the number of days for each month where the species is likely to be present within the site
Input days for those months where the species is likely to be present within the site
Input the appropriate night time correction factor for the species being assessed, e.g. a 25% nocturnal flight time correction was proposed by Band et al for geese. This correction cannot be applied to all species, for example raptors.

Go to Collision Risk

Final collision risk estimates are highlighted
Only use the collision risk estimate for the method that has been used

Scottish Natural Heritage: Calculating a theoretical collision risk assuming no avoiding action

Site Name: Energy Isles Wind Farm
= data input required
= model calculates value

Stage 1: Number of birds flying through rotors

Input Parameters

Bird Dimensions		Bird Flight Data		
Species	Greylag Goose	No of birds	61	
length (\mathbf{m})	0.82	Time spent in $\mathbf{V}_{\mathbf{w}}(\mathbf{s e c})$	164584.92	
wing span (\mathbf{m})	1.64			
speed $(\mathbf{m} / \mathbf{s e c})$	19			
Turbine Dimensions		Wind Farm Dimensions		
Height of tower (\mathbf{m})	123	No of turbines	23	
Blade length (\mathbf{m})	77	Site width (\mathbf{m})	5496	
Max blade height (\mathbf{m})	200			
Min blade height (\mathbf{m})	46			
Depth of rotor (\mathbf{m})	3.651781			

Method 2 - Regular flights through windfarm (to be used for birds that fly across the site using the same flight path)

CALCULATION OF COLLISION RISK FOR BIRD PASSING THROUGH ROTOR AREA

Input parameters regarding the turbine specification will need to be obtained from the design engineers or manufacturers.

Bird survey data

Date	Time observed (seconds)		Number of geese	Bird Occupancy in flight risk volume
TOTAL	1820	61	5010	
TOTAL SURVEY TIME	144 hours	or	518400 seconds	

Period when Greylag Goose likely to be on site (see below) =

Assumption 2
Assumption 3
Assumption 4:
Proportion of time during which a collision may occur $=$
Greylag Goose flight time $=\quad 5010$ seconds
12 months =
in
17030104 (in each year)
Therefore in
12 months $=\quad 164584.92$ seconds
518400 seconds survey time

Number of hours geese are potentially active during winter (from Band et al, in press)
for goose species. It provides an adjustment for nocturna
flight behaviour for these species.

		Jan		eb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nox	Dec	
Mean Daylight hours**			6.8	9.08	11.78	14.62	17.23	18.77	18.05	15.68	12.88	10.05	7.45	5.98	
Mean Nocturnal hrs*	5		0.86	0.746	0.611	0.469	0.3385	0.2615	0.2975	0.416	0.556	0.6975	0.8275	0.901	
Combined Daily Mean			7.66	9.826	12.391	15.089	17.5685	19.0315	18.3475	16.096	13.436	10.7475	8.2775	6.881	
No of days birds present			31	28	31	30	31	30	31	31	30	31	30	31	
Total hours each month			237.46	275.128	384.121	452.67	544.6235	570.945	568.7725	498.976	403.08	333.1725	248.325	213.311	4730.585
Total hours per year			4730.5845												

**Mean daylight hours taken from www.shetland.climatetemps.com/sunlight.php

Method 2 -Regular flights through windfarm (to be used for birds that fly across the site using the same flight path)
Number of bird transits through the rotors per annum $=\quad 780.93$
Average collision risk for bird passing through rotor $=\quad 9.0 \%$
$\begin{array}{ll}\text { Number of birds potentially killed by rotors per annum }= & 70.20\end{array}$

NB: The above calculation assumes no avoidance
Correcting for 95\% collision risk:
Correcting for 98\% avoidance rate:
Number of birds potentially killed by rotors per annum =

Correcting for 99% avoidance rate
Number of birds potentially killed by rotors per annum $=$
Number of birds potentially killed by rotors per annum $=$

Bird Dimensions

Species

length (m)
wing span (m)
Greylag Goose
0.82
speed (m/sec)
Turbine Dimensions
Height of tower (m) 123
Blade length (m) 77
Max blade height (m) 46
Depthade height (m) 3.651781003

Wind Farm Dimensions

No of turbines	23
Site width (m)	5496

Turbine Specifications
K: [1D or [3D] (0 or 1)
NoBlades
MaxChord
Pitch (degrees)
Rotation period

Flight Characteristics
Flapping (0) or gliding (+1)
0

Survey Data
Total survey time (hours)
288
Period when Greylag Goose

= data input required
 = model calculates value

Sources of speed and dimension information: Bruderer \& Boldt (2001); BTO Bird Facts

Note, the maximum height of turbines $5,16,19,20,24,25,26,27$ and 28 is lower, at 180 m

The width is equal to the width (perpendicular to the general flight direction of geese) across the total visible area (at a minimum 30 m above ground level) from vantage points 1, 2, 3 and 6.
The extent of the visible area is shown on Figure 6.1

Night adjustment
What percentage of the night is the target species active:
5 \%

Type in the number of days in each month where the target species is present within the site

Jan	Feb	Mar		Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
31	28		31	30	31	30	31	31	30	31	30	31

Enter the date of each record, the time the bird(s) was recorded in the collision risk area and the number of birds on a separate Bird occupancy is automatically calculated.

Date	e observed (seconds)	Number of birds	Bird Occupancy in f	
21/09/2017	35	1	35	(the time in seconds is
21/09/2017	60	16	960	aggregated time for each
21/09/2017	97	4	388	species modelled)
26/09/2017	60	4	240	
26/09/2017	80	4	320	
04/10/2017	15	13	195	
04/10/2017	30	9	270	
02/11/2017	30	2	60	
02/11/2017	45	7	315	
02/11/2017	120	10	1200	
05/11/2017	30	5	150	
06/11/2017	65	1	65	
06/11/2017	25	5	125	
06/11/2017	30	2	60	
14/12/2017	65	1	65	
19/02/2018	72	1	72	
19/02/2018	45	1	45	
19/02/2018	15	3	45	
22/02/2018	56	2	112	
18/02/2018	62	9	558	
21/02/2018	4	2	8	
08/03/2018	80	2	160	
09/03/2018	70	2	140	
31/03/2018	60	2	120	
10/04/2018	90	2	180	
15/05/2018	15	2	30	
07/06/2018	15	2	30	
07/06/2018	130	1	130	
07/06/2018	90	7	630	
07/06/2018	75	1	75	
08/06/2018	45	1	45	
21/08/2018	15	4	60	
Total	1726	128	6888	

Method 2 - Regular flights through windfarm

(to be used for birds that fly across the site using the same flight path)
$=$ data input required
$=$ model calculates value

Step 1

Step 2
Go to Data Input
Input data about the species that is being assessed - body length, wing span and flight speed
Input data on turbine dimensions
Input data on wind farm area
Input data on turbine dimensions and specification
Input all vantage point data for the species that is being assessed - number of birds and flight time within the study area Input the number of days for each month where the species is likely to be present within the site
Input days for those months where the species is likely to be present within the site
Input the appropriate night time correction factor for the species being assessed, e.g. a 25% nocturnal flight time correction was proposed by Band et al for geese. This correction cannot be applied to all species, for example raptors.

Go to Collision Risk

Final collision risk estimates are highlighted
Only use the collision risk estimate for the method that has been used

Scottish Natural Heritage: Calculating a theoretical collision risk assuming no avoiding action
Site Name: Energy Isles Wind Farm
= data input required
= model calculates value
Stage 1: Number of birds flying through rotors
Input Parameters

Bird Dimensions Species	Greylag Goose	Bird Flight Data No of birds	128
length (m)	0.82	Time spent in V_{w} ($\mathbf{s e c}$)	113139.81
wing span (m)	1.64		
speed (m/sec)	19		
Turbine Dimensions		Wind Farm Dimen	sions
Height of tower (m)	123	No of turbines	23
Blade length (m)	77	Site width (m)	5496
Max blade height (m)	200		
Min blade height (m)	46		
Depth of rotor (m)	3.651781		

Method 2 - Regular flights through windfarm
 (to be used for birds that fly across the site using the same flight path)

1 Risk window (site width x height of turbine)	$\begin{aligned} & \text { width of site } \\ & \text { height of turbine } \\ & \text { cross-sectional area = } \end{aligned}$	$\begin{gathered} 5496 \mathrm{~m} \\ 200 \mathrm{~m} \\ 1099200 \mathrm{sq} \mathrm{~m} \end{gathered}$
2 Number of birds flying through risk window per annum	hours of observation number of birds observed birds/hr	$\begin{array}{r} 288 \\ 128 \\ 0.444444 \end{array}$

CALCULATION OF COLLISION RISK FOR BIRD PASSING THROUGH ROTOR AREA

Input parameters regarding the turbine specification will need to be obtained from the design engineers or manufacturers.

Bird survey data

Date	Time observed (seconds)		Number of geese	Bird Occupancy in flight risk volume
TOTAL	1726	128	6888	
TOTAL SURVEY TIME	288 hours	or	1036800 seconds	

Period when Greylag Goose likely to be on site (see below) =

Period when Greylag Goose likely to be on site $=\quad 17030104$ seconds \quad (in each year)
Assumptions (write in any assumptions that have been included in the model)
Assumption 1: The flying period extends from dawn to dusk and includes 5% of night
Assumption 2:
Assumption 3:
Assumption 4:

Proportion of time during which a collision may occur = Greylag Goose flight time $=\quad 6888$ seconds $\begin{array}{ll}\text { Greylag Goose flight time }= \\ \text { Therefore in } & 6888 \text { months }=\end{array}$ =

17030104 (in each year)
1036800 seconds survey time
113139.81 seconds

Number of hours geese are potentially active during winter (from Band et al, in press)
Note: This table is only relevant when calculating collision risk for goose species. It provides an adjustment for nocturnal

		Jan	Feb		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nox	Dec	
Mean Daylight hours**			6.8	9.08	11.78	14.62	17.23	18.77	18.05	15.68	12.88	10.05	7.45	5.98	
Mean Nocturnal hrs*	5		0.86	0.746	0.611	0.469	0.3385	0.2615	0.2975	0.416	0.556	0.6975	0.8275	0.901	
Combined Daily Mean			7.66	9.826	12.391	15.089	17.5685	19.0315	18.3475	16.096	13.436	10.7475	8.2775	6.881	
No of days birds present			31	28	31	30	31	30	31	31	30	31	30	31	
Total hours each month			237.46	275.128	384.121	452.67	544.6235	570.945	568.7725	498.976	403.08	333.1725	248.325	213.311	4730.585
Total hours per year			0.5845												

**Mean daylight hours taken from www.shetland.climatetemps.com/sunlight.php

Method 2 -Regular flights through windfarm (to be used for birds that fly across the site using the same flight path)
Number of bird transits through the rotors per annum $=819.33$
Average collision risk for bird passing through rotor $=\quad 9.0 \%$
Number of birds potentially killed by rotors per annum = 73.65

NB: The above calculation assumes no avoidance
Correcting for 95\% collision risk:
Correcting for 98\% avoidance rate:
Number of birds potentially killed by rotors per annum =

Correcting for 99% avoidance rate
Number of birds potentially killed by rotors per annum =
Number of birds potentially killed by rotors per annum $=$

Energy Isles Wind Farm

Bird Dimensions

Species	Red-throated diver
length (m)	0.61
wing span (m)	1.11
speed $(\mathrm{m} / \mathrm{sec})$	21.1

- 1.11
speed (m/sec)
Turbine Dimensions

Height of tower (m)	123
Blade length (m)	77
Max blade height (m)	200
Min blade height (m)	46

Min blade height (m) 46
Depth of rotor (m) 3.651781003

Wind Farm Dimensions

No of turbines	23
Site area $\left(\mathbf{m}^{2}\right)$	19680000

Turbine Specifications
K: [1D or [3D] (0 or 1)
NoBlades
MaxChord
Pitch (degrees)
Rotation period

Flight Characteristics Flapping (0) or gliding (+1) 0

Survey Data
Total survey time (hours) 144
Period when Red-throated dives likely to be on site.

Night adjustment
What percentage of the night is the target species active?
5 \%

Jan		Feb		Mar		Apr	May	Jun	Jul	Aug	Sep		Oct		Nov		Dec	
	0		0		0	30	31	30	31	31		0		0		0		0

Total number of months when Red-throated diver
likely to be present: 5

Enter the date of each record, the time the bird(s) was recorded in the collision risk area and the number of birds on a separate Bird occupancy is automatically calculated.

Date	Time observed (seconds)	Number of birds	Bird Occupancy in flig
05/04/2016	140	2	280
03/05/2016	60	1	60
03/05/2016	5	1	5
04/05/2016	120	1	120
22/05/2016	45	1	45
22/05/2016	60	2	120
06/06/2016	40	2	80
07/06/2016	90	2	180
07/06/2016	45	1	45
07/06/2016	10	1	10
07/06/2016	310	1	310
07/06/2016	135	1	135
07/06/2016	30	1	30
07/06/2016	220	2	440
07/06/2016	25	2	50
18/07/2016	304	2	608
18/07/2016	105	1	105
18/07/2016	20	5	100
18/07/2016	72	2	144
18/07/2016	186	1	186
18/07/2016	131	1	131
18/07/2016	198	2	396
18/07/2016	363	2	726
19/07/2016	41	2	82
19/07/2016	78	2	156
19/07/2016	113	2	226
22/07/2016	39	2	78
22/07/2016	223	2	446
02/08/2016	90	1	90
02/08/2016	210	1	210
02/08/2016	240	2	480
02/08/2016	240	3	720
02/08/2016	225	2	450
02/08/2016	45	2	90
02/08/2016	15	2	30

02/08/2016	255	2	510
02/08/2016	135	2	270
02/08/2016	60	2	120
04/08/2016	150	2	300
04/08/2016	60	1	60
10/08/2016	390	1	390
12/08/2016	75	1	75
12/08/2016	55	2	110
12/08/2016	30	1	30
12/08/2016	45	4	180
23/08/2016	225	2	450
23/08/2016	75	1	75
23/08/2016	40	1	40
23/08/2016	10	1	10
24/08/2016	5	1	5
24/08/2016	495	2	990
24/08/2016	240	1	240
24/08/2016	135	1	135
24/08/2016	160	1	160
24/08/2016	85	1	85
24/08/2016	340	2	680
24/08/2016	100	2	200
Total	7438	94	12479

Method 1 - Birds using the windfarm airspace

(to be used for birds that fly across the site using a variety of different flight paths)

```
= data input required
= model calculates value
```


Step 1

Go to Data Input

Input data about the species that is being assessed - body length, wing span and flight speed Input data on turbine dimensions
Input data on wind farm area
Input data on turbine dimensions and specification
Input all vantage point data for the species that is being assessed - number of birds and flight time within the study area Input the number of days for each month where the species is likely to be present within the site
Input days for those months where the species is likely to be present within the site
Input the appropriate night time correction factor for the species being assessed, e.g. a 25% nocturnal flight time correction was proposed by Band et al for geese. This correction cannot be applied to all species, for example raptors.

Step 2

Go to Collision Risk
Final collision risk estimates are highlighted
Only use the collision risk estimate for the method that has been used

Scottish Natural Heritage: Calculating a theoretical collision risk assuming no avoiding action

Site Name: Energy Isles Wind Farm = data input required
Stage 1: Number of birds flying through rotors
Input Parameters

Bird Dimensions Species	Red-throated diver	Bird Flight Data No of birds	94
length (m)	0.61	Time spent in V_{w} (sec)	228433.90
wing span (m)	1.11		
speed (m/sec)	21.1		
Turbine Dimensions		Wind Farm Dimen	ons
Height of tower (m)	123	No of turbines	23
Blade length (m)	77		
Max blade height (m)	200		
Min blade height (m)	46	Site Area (m^{2})	19680000
Depth of rotor (m)	3.651781		

Method 1 - Birds using the windfarm airspace

Step No

 1 Description of CalculationIdentify 'flight risk volume' V_{w} ' which is the
area of the wind farm multiplied by the height of the turbines

Calculate the combined volume swept out by the rotors
$V_{r}=N \times \pi R^{2} \times(d+I)$ where N is the
number of turbines, d is the depth of the
(to be used for birds that fly across the site using a variety of different flight paths)
$\mathrm{V}_{\mathrm{w}}=$ $3936000000 \mathrm{~m}^{3}$ omments
Area is equivalent to the total area visible from VPs 1, 2, 3 and 6
rotor front to back, and I is the bird length

Estimate bird occupancy n within V_{w} This is the number of birds multiplied by the time spent within V_{w} (per season/year)

Bird occupancy of V_{r}
$\mathrm{n} \times\left(\mathrm{V}_{\mathrm{r}} / \mathrm{V}_{\mathrm{w}}\right)$ bird-seconds

Time taken for a bird to make transit through and completely clear the rotors $t=(d+l) / v$ where v is bird speed $(\mathrm{m} / \mathrm{sec})$

Calculate number of bird transits through
the rotors $=\mathrm{nx}\left(\mathrm{V}_{\mathrm{r}} / \mathrm{V}_{\mathrm{w}}\right) / \mathrm{t}$
228433.90 secs per yr
occupancy $=$
$t=$
transits $=$
524.56 bird transits per annum

Bird occupancy is based on observations of birds flying through rotor-swept area

Speed should be assessed in the field but published values are available

CALCULATION OF COLLISION RISK FOR BIRD PASSING THROUGH ROTOR AREA

Input parameters regarding the turbine specification will need to be obtained from the design engineers or manufacturers.

Bird survey data

Date	Time observed (seconds)		Number of birds	Bird Occupancy in flight risk volume
TOTAL	7438			
TOTAL SURVEY TIME	144 hours	or	518400 seconds	

Period when Red-throated likely to be on site (see below) =

Jan	Feb	Mar	Apr		May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	0	0	0	30	31	30	31	31	0	0	0	0
Total days $=$	153		Total hours (corrected					2635.987				

Period when Red-throated likely to be on site $=\quad 9489553$ seconds \quad (in each year)
Assumptions (write in any assumptions that have been included in the model)
Assumption 1: The flying period extends from dawn to dusk and includes 25% of night.
Assumption 2:
Assumption 3
Assumption 4:
Proportion of time during which a collision may occur $=$
Red-throated d flight time $=12479$ seconds
Therefore in 5 months $=\quad 228433.90$ seconds
9489553 (in each year)
518400 seconds survey time

Number of hours geese are potentially active during winter (from Band et al, in press)
Note: This table is only relevant when calculating collision risk

		Jan	Feb		Mar	Apr	May	Jun	ul Aug		Sep	Oct	Nox Dec	
Mean Daylight hours**			6.8	9.08	11.78	14.62	17.23	18.77	18.05	15.68	12.88	10.05	7.45	5.98
Mean Nocturnal hrs*	5		0.86	0.746	0.611	0.469	0.3385	0.2615	0.2975	0.416	0.556	0.6975	0.8275	0.901
Combined Daily Mean			7.66	9.826	12.391	15.089	17.5685	19.0315	18.3475	16.096	13.436	10.7475	8.2775	6.881
No of days birds present			0	0	0	30	31	30	31	31	0	0	0	0
Total hours each month			0	0	0	452.67	544.6235	570.945	568.7725	498.976	0	0	0	0

Total hours each month
2635.987
**Mean daylight hours taken from www.shetland.climatetemps.com/sunlight.php

Method 1 - Birds using the windfarm airspace (to be used for birds that fly across the site using a variety of different flight paths)
Number of bird transits through the rotors per annum = 524.56
Average collision risk for bird passing through rotor $=\quad 7.2 \%$
Number of birds potentially killed by rotors per annum $=\quad 37.67$

NB: The above calculation assumes no avoidance
Correcting for 95% avoidance rate:
Number of birds potentially killed by rotors per annum $=$

Correcting for 99\% avoidance rate:
Number of birds potentially killed by rotors per annum =

Correcting for 98\% avoidance rate:
Number of birds potentially killed by rotors per annum $=$

Correcting for 99.5\% avoidance rate:
Number of birds potentially killed by rotors per annum $=$

Site Name

Energy Isles Wind Farm

Bird Dimensions

Species

length (m)
wing span (m)
Red-throated diver
0.61

Turbine Dimensions

Height of tower (m)	123
Blade length (m)	77
Max blade height (m)	200
Min blade height (m)	46

Min blade height (m) 3.651781003
\square
200

Depth of rotor (m)

Wind Farm Dimensions

Site area (m2)
19680000
Turbine Specifications
K: [1D or [3D] (0 or 1)
NoBlades
MaxChord
Pitch (degrees)
Rotation period
Flight Characteristics
Flapping (0) or gliding (+1)
0
Survey Data
Total survey time (hours)
Period when Red-throated divel likely to be on site.

= data input required
 = model calculates value

Sources of speed and dimension information: Bruderer \& Boldt (2001); BTO Bird Facts

Note, the maximum height of turbines $5,16,19,20,24,25,26,27$ and 28 is lower, at 180 m

The area is equal to the total visible area (at a minimum 30 m above ground level) from vantage points $1,2,3$ and 6 . The extent of this area is shown on Figure 6.1.

Night adjustment
What percentage of the night is the target species active:

36 hours at each of 4 VP locations.
Type in the number of days in each month where the target species is present within the site

Total number of months when Red-throated diver
likely to be present: 5

Enter the date of each record, the time the bird(s) was recorded in the collision risk area and the number of birds on a separate Bird occupancy is automatically calculated.

Date	Time observed (seconds)	Number of birds	Bird Occupancy in flig
17/05/2018	70	1	70
17/05/2018	100	1	100
17/05/2018	45	1	45
17/05/2018	15	2	30
17/05/2018	30	1	30
18/05/2018	145	1	145
15/05/2018	33	2	66
15/05/2018	67	1	67
15/05/2018	15	1	15
15/05/2018	224	2	448
15/05/2018	60	1	60
15/05/2018	30	1	30
15/05/2018	75	1	75
15/05/2018	15	2	30
16/05/2018	30	2	60
16/05/2018	20	3	60
07/06/2018	39	1	39
07/06/2018	160	1	160
07/06/2018	165	2	330
07/06/2018	85	3	255
07/06/2018	117	1	117
07/06/2018	10	1	10
07/06/2018	133	2	266
07/06/2018	69	1	69
07/06/2018	133	1	133
07/06/2018	149	1	149
08/06/2018	90	3	270
08/06/2018	130	1	130
12/06/2018	25	1	25
12/06/2018	166	2	332
12/06/2018	30	1	30
12/06/2018	216	1	216
05/07/2018	650	3	1950
05/07/2018	90	1	90
05/07/2018	108	1	108

05/07/2018	109	1	109
05/07/2018	30	2	60
05/07/2018	105	1	105
05/07/2018	35	1	35
05/07/2018	40	1	40
02/07/2018	30	2	60
02/07/2018	122		244
02/07/2018	14	1	14
02/07/2018	85	2	170
06/07/2018	127	1	127
06/07/2018	150	2	300
06/07/2018	45	1	45
06/07/2018	30	1	30
02/08/2018	36	2	72
02/08/2018	54	2	108
02/08/2018	199	3	597
02/08/2018	144	1	144
02/08/2018	30	1	30
03/08/2018	48	2	96
03/08/2018	175	2	350
07/08/2018	15	2	30
15/08/2018	115	1	115
15/08/2018	45	2	90
15/08/2018	45	3	135
15/08/2018	31	1	31
15/08/2018	38	1	38
15/08/2018	150	1	150
20/08/2018	67	2	134
20/08/2018	85	2	170
20/08/2018	60	2	120
21/08/2018	75	2	150
21/08/2018	45	1	45
21/08/2018	240	2	480
21/08/2018	345		690
21/08/2018	110	3	330
21/08/2018	435	2	870
21/08/2018	35	1	35
21/08/2018	250	2	500
21/08/2018	100	2	200
21/08/2018	285	3	855

$21 / 08 / 2018$	53	1	53
$21 / 08 / 2018$	120	2	240
$24 / 08 / 2018$	90	2	180
$24 / 08 / 2018$	60	2	120
$24 / 08 / 2018$	180	1	$\mathbf{1 8 0}$
Total	$\mathbf{8 2 2 1}$	$\mathbf{1 2 7}$	$\mathbf{1 4 6 8 7}$

Method 1 - Birds using the windfarm airspace

(to be used for birds that fly across the site using a variety of different flight paths)

```
= data input required
= model calculates value
```


Step 1

Go to Data Input

Input data about the species that is being assessed - body length, wing span and flight speed Input data on turbine dimensions
Input data on wind farm area
Input data on turbine dimensions and specification
Input all vantage point data for the species that is being assessed - number of birds and flight time within the study area Input the number of days for each month where the species is likely to be present within the site
Input days for those months where the species is likely to be present within the site
Input the appropriate night time correction factor for the species being assessed, e.g. a 25% nocturnal flight time correction was proposed by Band et al for geese. This correction cannot be applied to all species, for example raptors.

Step 2

Go to Collision Risk
Final collision risk estimates are highlighted
Only use the collision risk estimate for the method that has been used

Scottish Natural Heritage: Calculating a theoretical collision risk assuming no avoiding action

Site Name: Energy Isles Wind Farm \quad data input required
Stage 1: Number of birds flying through rotors
Input Parameters

Bird Dimensions	Red-throated diver	Bird Flight Data No of birds	127
length (m)	0.61	Time spent in V_{w} (sec)	268852.37
wing span (m)	1.11		
speed (m/sec)	21.1		
Turbine Dimensions		Wind Farm Dimen	ns
Height of tower (m)	123	No of turbines	23
Blade length (m)	77		
Max blade height (m)	200		
Min blade height (m)	46	Site Area (m2)	19680000
Depth of rotor (m)	3.651781		

Method 1 - Birds using the windfarm airspace

(to be used for birds that fly across the site using a variety of different flight paths)

Step No

Description of Calculation

1 area of the wind farm multiplied by the height of the turbines

2
Calculate the combined volume swept out
$V_{r}=$

Calculation

$3936000000 \mathrm{~m}^{3}$

Comments

Area is equivalent to the total area visible from VPs 1, 2, 3 and 6
by the rotors
$V_{r}=N \times \pi R^{2} \times(d+I)$ where N is the
number of turbines, d is the depth of the
rotor front to back, and I is the bird length

Estimate bird occupancy n within V_{w} This is the number of birds multiplied by the time spent within V_{w} (per season/year)

Bird occupancy of V_{r}
$\mathrm{n} \times\left(\mathrm{V}_{\mathrm{r}} / \mathrm{V}_{\mathrm{w}}\right)$ bird-seconds

Time taken for a bird to make transit through and completely clear the rotors $t=(d+l) / v$ where v is bird speed $(\mathrm{m} / \mathrm{sec})$

Calculate number of bird transits through
the rotors $=\mathrm{nx}\left(\mathrm{V}_{\mathrm{r}} / \mathrm{V}_{\mathrm{w}}\right) / \mathrm{t}$
268852.37 secs per yr
occupancy =
$t=$
transits $=$
617.37 bird transits per annum

Number of bird transits through the rotors per annum $=$

Bird occupancy is based on observations of birds flying through rotor-swept area

Speed should be assessed in the field but published values are available

CALCULATION OF COLLISION RISK FOR BIRD PASSING THROUGH ROTOR AREA

Input parameters regarding the turbine specification will need to be obtained from the design engineers or manufacturers.

Bird survey data

Date	Time observed (seconds)		Number of birds
TOTAL	8221		Bird Occupancy in flight risk volume
TOTAL SURVEY TIME	144 hours	or	518400 seconds

Period when Red-throated likely to be on site (see below) =

Jan	Feb	Mar	Apr		May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	0	0	0	30	31	30	31	31	0	0	0	0
Total days $=$	153		Total hours (corrected					2635.987				

Period when Red-throated likely to be on site $=\quad 9489553$ seconds \quad (in each year)
Assumptions (write in any assumptions that have been included in the model)
Assumption 1: The flying period extends from dawn to dusk and includes 25% of night.
Assumption 2:
Assumption 3
Assumption 4

Proportion of time during which a collision may occur $=$
Red-throated d flight time $=14687$ seconds
Therefore in 5 months $=$
9489553 (in each year)
518400 seconds survey time

Number of hours geese are potentially active during winter (from Band et al, in press)

		Jan	Feb		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nox	Dec
Mean Daylight hours**			6.8	9.08	11.78	14.62	17.23	18.77	18.05	15.68	12.88	10.05	7.45	5.98
Mean Nocturnal hrs*	5		0.86	0.746	0.611	0.469	0.3385	0.2615	0.2975	0.416	0.556	0.6975	0.8275	0.901
Combined Daily Mean			7.66	9.826	12.391	15.089	17.5685	19.0315	18.3475	16.096	13.436	10.7475	8.2775	6.881
No of days birds present			0	0	0	30	31	30	31	31	0	0	0	0
Total hours each month			0	0	0	452.67	544.6235	570.945	568.7725	498.976	0	0	0	0
Total hours per year			.987											

Note: This table is only relevant when calculating collision risk for goose species. It provides an adjustment for nocturnal flight behaviour for these species.
**Mean daylight hours taken from www.shetland.climatetemps.com/sunlight.php

Method 1 - Birds using the windfarm airspace (to be used for birds that fly across the site using a variety of different flight paths)
Number of bird transits through the rotors per annum $=$
Average collision risk for bird passing through rotor $=\quad 7.2 \%$
Number of birds potentially killed by rotors per annum = 44.33

NB: The above calculation assumes no avoidance
Correcting for 95% avoidance rate:
Number of birds potentially killed by rotors per annum $=$
Correcting for 98\% avoidance rate:
Number of birds potentially killed by rotors per annum =

Correcting for 99\% avoidance rate:
Number of birds potentially killed by rotors per annum =
Correcting for 99.5\% avoidance rate:
Number of birds potentially killed by rotors per annum =

Energy Isles Wind Farm

Bird Dimensions
Species
length (m)
wing span (m)
speed (m/sec)

Great Skua

0.56

Turbine Dimensions
Height of tower (m)
Blade length (m)
Max blade height (m
Min blade height (m)
Depth of rotor (m)
Wind Farm Dimensions
No of turbines
Site area (m2)

Turbine Specifications
K: [1D or [3D] (0 or 1)
NoBlades
MaxChord
Pitch (degrees)
Rotation period
Flight Characteristics
Flapping (0) or gliding (+1)

Survey Data
Total survey time (hours)
Period when Great Skua

= data input required
 = model calculates value

Sources of speed and dimension information: Bruderer \& Boldt (2001); BTO Bird Facts

Note, the maximum height of turbines $5,16,19,20,24,25,26,27$ and 28 is lower, at 180 m

The area is equal to the total visible area (at a minimum 30 m above ground level) from vantage points $1,2,3$ and 6 . The extent of this area is shown on Figure 6.1.

Enter the date of each record, the time the bird(s) was recorded in the collision risk area and the number of birds on a separat Bird occupancy is automatically calculated.

Date	Time observed (seconds)	Number of birds	Bird Occupancy in flig
11/04/2016	45	1	45
11/04/2016	60	1	60
11/04/2016	30	1	30
11/04/2016	30	1	30
03/05/2016	80	1	80
03/05/2016	150	1	150
04/05/2016	45	1	45
04/05/2016	20	1	20
04/05/2016	40	1	40
04/05/2016	40	1	40
04/05/2016	100	1	100
04/05/2016	40	1	40
04/05/2016	6	1	6
22/05/2016	15	2	30
22/05/2016	210	3	630
22/05/2016	30	3	90
22/05/2016	105	1	105
22/05/2016	60	1	60
27/05/2016	195	1	195
27/05/2016	80	1	80
27/05/2016	65	1	65
27/05/2016	345	4	1380
27/05/2016	65	1	65
27/05/2016	90	1	90
27/05/2016	45	1	45
27/05/2016	90	1	90
27/05/2016	285	2	570
27/05/2016	120	1	120
27/05/2016	720	6	4320
27/05/2016	145	1	145
27/05/2016	420	4	1680
27/05/2016	180	4	720
27/05/2016	60	4	240
02/06/2016	30	1	30
02/06/2016	70	2	140

02/06/2016	15	1	15
02/06/2016	25	1	25
02/06/2016	75	1	75
06/06/2016	75	1	75
06/06/2016	240	1	240
06/06/2016	45	1	45
06/06/2016	30	1	30
06/06/2016	60	1	60
06/06/2016	15	1	15
06/06/2016	30	1	30
06/06/2016	35	1	35
06/06/2016	195	1	195
06/06/2016	55	1	55
06/06/2016	90	1	90
06/06/2016	105	1	105
06/06/2016	90	1	90
07/06/2016	240	1	240
07/06/2016	60	1	60
07/06/2016	135	1	135
07/06/2016	75	1	75
07/06/2016	90	1	90
07/06/2016	20	1	20
07/06/2016	135	1	135
18/07/2016	184	1	184
18/07/2016	75	1	75
18/07/2016	103	1	103
18/07/2016	30	1	30
18/07/2016	35	3	105
18/07/2016	75	1	75
18/07/2016	90	3	270
18/07/2016	109	1	109
18/07/2016	73	1	73
18/07/2016	45	2	90
18/07/2016	90	1	90
18/07/2016	142	1	142
18/07/2016	75	1	75
18/07/2016	468	1	468
18/07/2016	106	1	106
18/07/2016	165	1	165
18/07/2016	135	1	135

18/07/2016	115	1	115
18/07/2016	128	1	128
19/07/2016	60	2	120
19/07/2016	76	1	76
19/07/2016	34	1	34
19/07/2016	30	3	90
19/07/2016	77	1	77
19/07/2016	62	2	124
19/07/2016	173	2	346
19/07/2016	71	2	142
19/07/2016	82	1	82
19/07/2016	59	1	59
19/07/2016	117	1	117
19/07/2016	98	1	98
19/07/2016	21	1	21
19/07/2016	211	1	211
19/07/2016	77	1	77
19/07/2016	25	1	25
19/07/2016	117	1	117
19/07/2016	30	1	30
19/07/2016	94	1	94
19/07/2016	75	1	75
19/07/2016	75	1	75
22/07/2016	75	1	75
22/07/2016	60	1	60
22/07/2016	23	1	23
22/07/2016	137	1	137
22/07/2016	104	1	104
22/07/2016	159	1	159
22/07/2016	87	1	87
22/07/2016	45	1	45
22/07/2016	2	1	2
22/07/2016	150	2	300
02/08/2016	90	1	90
02/08/2016	30	1	30
02/08/2016	30	1	30
02/08/2016	15	2	30
02/08/2016	75	1	75
02/08/2016	15	1	15
02/08/2016	210	1	210

03/08/2016	15	1	15
03/08/2016	135	2	270
03/08/2016	5	1	5
04/08/2016	100	2	200
04/08/2016	15	1	15
04/08/2016	30	1	30
04/08/2016	15	1	15
04/08/2016	45	1	45
04/08/2016	30	1	30
04/08/2016	15	1	15
04/08/2016	48	1	48
04/08/2016	45	1	45
04/08/2016	35	1	35
04/08/2016	75	1	75
04/08/2016	145	1	145
10/08/2016	160	1	160
10/08/2016	180	1	180
10/08/2016	60	1	60
10/08/2016	105	1	105
10/08/2016	45	1	45
10/08/2016	90	1	90
10/08/2016	85	1	85
10/08/2016	60	1	60
12/08/2016	60	1	60
12/08/2016	15	1	15
12/08/2016	30	1	30
12/08/2016	105	1	105
23/08/2016	15	1	15
23/08/2016	120	1	120
23/08/2016	20	1	20
23/08/2016	15	2	30
23/08/2016	95	1	95
23/08/2016	20	1	20
23/08/2016	95	1	95
23/08/2016	20	1	20
23/08/2016	60	1	60
24/08/2016	60	1	60
24/08/2016	95	1	95
24/08/2016	165	1	165
24/08/2016	70	1	70

24/08/2016	185	1	185
24/08/2016	230	1	230
24/08/2016	190	1	190
25/08/2016	180	1	180
25/08/2016	50	1	50
25/08/2016	135	1	135
25/08/2016	265	1	265
25/08/2016	270	1	270
25/08/2016	100	1	100
25/08/2016	25	1	25
25/08/2016	155	1	155
25/08/2016	140	1	140
25/08/2016	105	1	105
25/08/2016	170	1	170
25/08/2016	900	2	1800
25/08/2016	90	1	90
25/08/2016	810	1	810
25/08/2016	135	1	135
25/08/2016	15	2	30
25/08/2016	450	1	450
31/08/2016	60	1	60
31/08/2016	5	1	5
31/08/2016	75	1	75
31/08/2016	15	1	15
31/08/2016	105	1	105
31/08/2016	60	1	60
31/08/2016	140	1	140
31/08/2016	90	1	90
31/08/2016	10	1	10
Total	19018	226	28534

Method 1 - Birds using the windfarm airspace

(to be used for birds that fly across the site using a variety of different flight paths)

```
= data input required
= model calculates value
```


Step 1

Go to Data Input

Input data about the species that is being assessed - body length, wing span and flight speed Input data on turbine dimensions
Input data on wind farm area
Input data on turbine dimensions and specification
Input all vantage point data for the species that is being assessed - number of birds and flight time within the study area Input the number of days for each month where the species is likely to be present within the site
Input days for those months where the species is likely to be present within the site
Input the appropriate night time correction factor for the species being assessed, e.g. a 25% nocturnal flight time correction was proposed by Band et al for geese. This correction cannot be applied to all species, for example raptors.

Step 2

Go to Collision Risk
Final collision risk estimates are highlighted
Only use the collision risk estimate for the method that has been used

Scottish Natural Heritage: Calculating a theoretical collision risk assuming no avoiding action

Site Name: Energy Isles Wind Farm	$=$ data input required
	$=$ model calculates value

Stage 1: Number of birds flying through rotors

Input Parameters

Bird Dimensions Species	Great Skua	Bird Flight Data No of birds	226
length (m)	0.56	Time spent in V_{w} ($\mathbf{s e c}$)	522328.15
wing span (m)	1.36		
speed (m/sec)	16		
Turbine Dimensions		Wind Farm Dimen	ns
Height of tower (m)	123	No of turbines	23
Blade length (m)	77		
Max blade height (m)	200		
Min blade height (m)	46	Site Area (m2)	19680000
Depth of rotor (m)	3.651781		

Method 1 - Birds using the windfarm airspace

(to be used for birds that fly across the site using a variety of different flight paths)

Step No	Description of Calculation		Calculation
1	Identify 'flight risk volume' V_{w} ' which is the area of the wind farm multiplied by the height of the turbines	$\mathrm{V}_{\mathrm{w}}=$	$3936000000 \mathrm{~m}^{3}$
2	Calculate the combined volume swept out by the rotors $V_{r}=N \times \pi R^{2} \times(d+I)$ where N is the number of turbines, d is the depth of the	$V_{r}=$	$1804141.75 \mathrm{~m}^{3}$

Comments

Area is equivalent to the total area visible from VPs 1, 2, 3 and 6
rotor front to back, and I is the bird length

Estimate bird occupancy n within V_{w} This is the number of birds multiplied by the time spent within V_{w} (per season/year)

Bird occupancy of V_{r}
$\mathrm{n} \times\left(\mathrm{V}_{\mathrm{r}} / \mathrm{V}_{\mathrm{w}}\right)$ bird-seconds

Time taken for a bird to make transit through and completely clear the rotors $t=(d+l) / v$ where v is bird speed $(\mathrm{m} / \mathrm{sec})$

Calculate number of bird transits through
the rotors $=\mathrm{nx}\left(\mathrm{V}_{\mathrm{r}} / \mathrm{V}_{\mathrm{w}}\right) / \mathrm{t}$
$\mathrm{n}=$
occupancy $=$
$t=$
transits $=$
909.52 bird transits per annum

Number of bird transits through the rotors per annum $=$

Bird occupancy is based on observations of birds flying through rotor-swept area

Speed should be assessed in the field but published values are available

CALCULATION OF COLLISION RISK FOR BIRD PASSING THROUGH ROTOR AREA

Input parameters regarding the turbine specification will need to be obtained from the design engineers or manufacturers.

Bird survey data

Date	Time observed (seconds)		Number of birds	Bird Occupancy in flight risk volum
TOTAL	19018		226	28534
TOTAL SURVEY TIME	144 hours	or	518400 seconds	

Period when Great Skua likely to be on site (see below) =

Assumptions (write in any assumptions that have been included in the model)
Assumption 1: The flying period extends from dawn to dusk and includes 25% of night
Assumption 2:
Assumption 3
Assumption 4

Proportion of time during which a collision may occur $=$
Great Skua flight time $=28534$ seconds
Therefore in 5 months $=$
5 months =
522328.15 seconds

Number of hours birds are potentially active during winter (from Band et al, in press)

		Jan			Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nox	Dec	
Mean Daylight hours**			6.8	9.08	11.78	14.62	17.23	18.77	18.05	15.68	12.88	10.05	7.45	5.98	
Mean Nocturnal hrs*	5		0.86	0.746	0.611	0.469	0.3385	0.2615	0.2975	0.416	0.556	0.6975	0.8275	0.901	
Combined Daily Mean			7.66	9.826	12.391	15.089	17.5685	19.0315	18.3475	16.096	13.436	10.7475	8.2775	6.881	
No of days birds present			0	0	0	30	31	30	31	31	0	0	0	0	
Total hours each month			0	0	0	452.67	544.6235	570.945	568.7725	498.976	0	0	0	0	2635.987

9489553 (in each year)
518400 seconds survey time

Note: \quad This table is only relevant when calculating collision risk for goose species. It provides an adjustment for nocturnal

Total hours per year
2635.987
**Mean daylight hours taken from www.shetland.climatetemps.com/sunlight.php

Method 1 - Birds using the windfarm airspace (to be used for birds that fly across the site using a variety of different flight paths)
Number of bird transits through the rotors per annum $=909.52$
Average collision risk for bird passing through rotor $=\quad 8.8 \%$
Number of birds potentially killed by rotors per annum $=\quad 80.02$

NB: The above calculation assumes no avoidance
Correcting for 95% avoidance rate: Correcting for 98% avoidance rate:
Number of birds potentially killed by rotors per annum $=$

Correcting for 99% avoidance rate:
Number of birds potentially killed by rotors per annum =

Correcting for 99.5\% avoidance rate:
Number of birds potentially killed by rotors per annum =

Energy Isles Wind Farm

Bird Dimensions

Species
length (m)
wing span (m)
speed (m/sec)

Arctic Skua

0.44

Turbine Dimensions
Height of tower (m) \square
Blade length (m)
Max blade height (m)
Min blade height (m)
Depth of rotor (m)
Wind Farm Dimensions

No of turbines

Site area $\left(\mathrm{m}^{2}\right)$

Turbine Specifications
K: [1D or [3D] (0 or 1)
NoBlades
MaxChord
Pitch (degrees)
Rotation period

Flight Characteristics Flapping (0) or gliding (+1)

0
Survey Data
Total survey time (hours) 144
Period when Arctic Skua
= data input required
= model calculates value
Sources of speed and dimension information: Bruderer \& Boldt (2001); BTO Bird Facts

Note, the maximum height of turbines $5,16,19,20,24,25,26,27$ and 28 is lower, at 180 m

The area is equal to the total visible area (at a minimum 30 m above ground level) from vantage points $1,2,3$ and 6 . The extent of this area is shown on Figure 6.1.

Night adjustment What percentage of the night is the target species active:

5 \%

Enter the date of each record, the time the bird(s) was recorded in the collision risk area and the number of birds on a separate Bird occupancy is automatically calculated.

22/05/2016
Number of

Number of birds Bird Occupancy in flight risk volume
60 1
18/07/2016 31

144

$22 / 07 / 2016$	144	1

$23 / 08 / 2016$	105	1

Method 1 - Birds using the windfarm airspace

(to be used for birds that fly across the site using a variety of different flight paths)

```
= data input required
= model calculates value
```


Step 1

Go to Data Input

Input data about the species that is being assessed - body length, wing span and flight speed Input data on turbine dimensions
Input data on wind farm area
Input data on turbine dimensions and specification
Input all vantage point data for the species that is being assessed - number of birds and flight time within the study area Input the number of days for each month where the species is likely to be present within the site
Input days for those months where the species is likely to be present within the site
Input the appropriate night time correction factor for the species being assessed, e.g. a 25% nocturnal flight time correction was proposed by Band et al for geese. This correction cannot be applied to all species, for example raptors.

Step 2

Go to Collision Risk
Final collision risk estimates are highlighted
Only use the collision risk estimate for the method that has been used

Scottish Natural Heritage: Calculating a theoretical collision risk assuming no avoiding action

Site Name: Energy Isles Wind Farm	$=$ data input required
	$=$ model calculates value

Stage 1: Number of birds flying through rotors

Input Parameters

Bird Dimensions	Arctic Skua	Bird Flight Data No of birds	4
length (m)	0.44	Time spent in V_{w} ($\mathbf{s e c}$)	6223.86
wing span (m)	1.18		
speed (m/sec)	12		
Turbine Dimensions		Wind Farm Dimen	ns
Height of tower (m)	123	No of turbines	23
Blade length (m)	77		
Max blade height (m)	200		
Min blade height (m)	46	Site Area (m2)	19680000
Depth of rotor (m)	3.651781		

Method 1 - Birds using the windfarm airspace

(to be used for birds that fly across the site using a variety of different flight paths)

Step No	Description of Calculation Identify 'flight risk volume' V_{w} ' which is the area of the wind farm multiplied by the height of the turbines		
2	Calculate the combined volume swept out by the rotors $V_{r}=N \times \pi R^{2} x(d+I)$ where N is the number of turbines, d is the depth of the		Calculation
:---:			
$3936000000 \mathrm{~m}^{3}$			

Comments

Area is equivalent to the total area visible from VPs 1, 2, 3 and 6
rotor front to back, and I is the bird length

Estimate bird occupancy n within V_{w} This is the number of birds multiplied by the time spent within V_{w} (per season/year)

Bird occupancy of V_{r}
$\mathrm{n} \times\left(\mathrm{V}_{\mathrm{r}} / \mathrm{V}_{\mathrm{w}}\right)$ bird-seconds

Time taken for a bird to make transit through and completely clear the rotors $t=(d+I) / v$ where v is bird speed $(m / s e c)$

Calculate number of bird transits through
the rotors $=\mathrm{nx}\left(\mathrm{V}_{\mathrm{r}} / \mathrm{V}_{\mathrm{w}}\right) / \mathrm{t}$
223.86 secs per yr
occupancy $=$
$t=$
transits $=$
. 13 bird transits per annum

Number of bird transits through the rotors per annum $=$8.13

CALCULATION OF COLLISION RISK FOR BIRD PASSING THROUGH ROTOR AREA

Input parameters regarding the turbine specification will need to be obtained from the design engineers or manufacturers.

Bird survey data

Date	Time observed (seconds)		Number of birds	Bird Occupancy in flight risk volum
TOTAL	340		4	340
TOTAL SURVEY TIME	144 hours	or	518400 seconds	

Period when Arctic Skua likely to be on site (see below) =

Assumptions (write in any assumptions that have been included in the model)
Assumption 1: The flying period extends from dawn to dusk and includes 25% of night.
Assumption 2:
Assumption 3
Assumption 4
Proportion of time during which a collision may occur $=$
Arctic Skua flight time $=\quad 340$ seconds
Therefore in 5 months $=$
6223.86 seconds

9489553 (in each year)
518400 seconds survey time

Number of hours birds are potentially active during winter (from Band et al, in press)
Note: \quad This table is only relevant when calculating collision risk for goose species. It provides an adjustment for nocturnal

		Jan	Feb		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nox	Dec	
Mean Daylight hours**			6.8	9.08	11.78	14.62	17.23	18.77	18.05	15.68	12.88	10.05	7.45	5.98	
Mean Nocturnal hrs*	5		0.86	0.746	0.611	0.469	0.3385	0.2615	0.2975	0.416	0.556	0.6975	0.8275	0.901	
Combined Daily Mean			7.66	9.826	12.391	15.089	17.5685	19.0315	18.3475	16.096	13.436	10.7475	8.2775	6.881	
No of days birds present			0	0	0	30	31	30	31	31	0	0	0	0	
Total hours each month			0	0	0	452.67	544.6235	570.945	568.7725	498.976	0	0	0	0	2635.987

Total hours per year
2635.987
**Mean daylight hours taken from www.shetland.climatetemps.com/sunlight.php

Method 1 - Birds using the windfarm airspace (to be used for birds that fly across the site using a variety of different flight paths)
Number of bird transits through the rotors per annum $=8.13$
Average collision risk for bird passing through rotor $=10.4 \%$
Number of birds potentially killed by rotors per annum = 0.84

NB: The above calculation assumes no avoidance
Correcting for 95% avoidance rate: Correcting for 98% avoidance rate:
Number of birds potentially killed by rotors per annum =

Correcting for 99\% avoidance rate:
Number of birds potentially killed by rotors per annum =
Correcting for 99.5\% avoidance rate:
Number of birds potentially killed by rotors per annum $=$

Energy Isles Wind Farm

Bird Dimensions

Species
length (m)
wing span (m)
speed (m/sec)

Arctic Skua

0.44

Turbine Dimensions
Height of tower (m) \square
Blade length (m)
Max blade height (m)
Min blade height (m)
Depth of rotor (m)
Wind Farm Dimensions

No of turbines

Site area $\left(\mathrm{m}^{2}\right)$

Turbine Specifications
K: [1D or [3D] (0 or 1)
NoBlades
MaxChord
Pitch (degrees)
Rotation period

Flight Characteristics Flapping (0) or gliding (+1)

0
Survey Data
Total survey time (hours) 144
Period when Arctic Skua
= data input required
= model calculates value
Sources of speed and dimension information: Bruderer \& Boldt (2001); BTO Bird Facts

Note, the maximum height of turbines $5,16,19,20,24,25,26,27$ and 28 is lower, at 180 m

The area is equal to the total visible area (at a minimum 30 m above ground level) from vantage points $1,2,3$ and 6 . The extent of this area is shown on Figure 6.1.

Night adjustment What percentage of the night is the target species active:

5 \%

Enter the date of each record, the time the birds) was recorded in the collision risk area and the number of birds on a separate Bird occupancy is automatically calculated.

05/07/2018 35
5 Number of

Number of birds Bird Occupancy in flight risk volume
05/07/2018
100
150 15
75

06/07/2018
$75-2$ 300
07/08/2018
07/08/2018 73

21/08/2018
21
469
1

75
-

Method 1 - Birds using the windfarm airspace

(to be used for birds that fly across the site using a variety of different flight paths)

```
= data input required
= model calculates value
```


Step 1

Go to Data Input

Input data about the species that is being assessed - body length, wing span and flight speed Input data on turbine dimensions
Input data on wind farm area
Input data on turbine dimensions and specification
Input all vantage point data for the species that is being assessed - number of birds and flight time within the study area Input the number of days for each month where the species is likely to be present within the site
Input days for those months where the species is likely to be present within the site
Input the appropriate night time correction factor for the species being assessed, e.g. a 25% nocturnal flight time correction was proposed by Band et al for geese. This correction cannot be applied to all species, for example raptors.

Step 2

Go to Collision Risk
Final collision risk estimates are highlighted
Only use the collision risk estimate for the method that has been used

Scottish Natural Heritage: Calculating a theoretical collision risk assuming no avoiding action

Site Name: Energy Isles Wind Farm	$=$ data input required
	$=$ model calculates value

Stage 1: Number of birds flying through rotors

Input Parameters

| Bird Dimensions | | $\begin{array}{l}\text { Bird Flight Data } \\ \text { Species }\end{array}$ | Arctic Skua | No of birds |
| :--- | ---: | :--- | :--- | ---: |$)$

Method 1 - Birds using the windfarm airspace

Step No

 1 Description of CalculationIdentify 'flight risk volume' V_{w} ' which is the
area of the wind farm multiplied by the height of the turbines

Calculate the combined volume swept out by the rotors
$V_{r}=N \times \pi R^{2} \times(d+I)$ where N is the
number of turbines, d is the depth of the
(to be used for birds that fly across the site using a variety of different flight paths)
$\mathrm{V}_{\mathrm{w}}=$ $3936000000 \mathrm{~m}^{3}$ omments
Area is equivalent to the total area visible from VPs 1, 2, 3 and 6
rotor front to back, and I is the bird length

Estimate bird occupancy n within V_{w} This is the number of birds multiplied by the time spent within V_{w} (per season/year)

Bird occupancy of V_{r}
$\mathrm{n} \times\left(\mathrm{V}_{\mathrm{r}} / \mathrm{V}_{\mathrm{w}}\right)$ bird-seconds

Time taken for a bird to make transit through and completely clear the rotors $t=(d+I) / v$ where v is bird speed $(m / s e c)$

Calculate number of bird transits through
the rotors $=\mathrm{nx}\left(\mathrm{V}_{\mathrm{r}} / \mathrm{V}_{\mathrm{w}}\right) / \mathrm{t}$
18323.77 secs per yr
occupancy $=$
$t=$
transits $=$ \square

Bird occupancy is based on observations of birds flying through rotor-swept area

Speed should be assessed in the field but published values are available

Number of bird transits through the rotors per annum $=$

CALCULATION OF COLLISION RISK FOR BIRD PASSING THROUGH ROTOR AREA

Input parameters regarding the turbine specification will need to be obtained from the design engineers or manufacturers.

Bird survey data

| Date | Time observed (seconds) | | Number of birds | Bird Occupancy in flight risk volum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| TOTAL | 469 | | 18 | 1001 |
| TOTAL SURVEY TIME | 144 hours | or | 518400 seconds | |

Period when Arctic Skua likely to be on site (see below) =

Assumptions (write in any assumptions that have been included in the model)
Assumption 1: The flying period extends from dawn to dusk and includes 25% of night
Assumption 2:
Assumption 3
Assumption 4
Proportion of time during which a collision may occur $=$
Arctic Skua flight time $=1001$ seconds
Therefore in 5 months $=\quad 18323.77$ seconds

9489553 (in each year)
518400 seconds survey time

Number of hours birds are potentially active during winter (from Band et al, in press)
Note: This table is only relevant when calculating collision risk for goose species. It provides an adjustment for nocturnal

		Jan	Feb		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nox	Dec	
Mean Daylight hours**			6.8	9.08	11.78	14.62	17.23	18.77	18.05	15.68	12.88	10.05	7.45	5.98	
Mean Nocturnal hrs*	5		0.86	0.746	0.611	0.469	0.3385	0.2615	0.2975	0.416	0.556	0.6975	0.8275	0.901	
Combined Daily Mean			7.66	9.826	12.391	15.089	17.5685	19.0315	18.3475	16.096	13.436	10.7475	8.2775	6.881	
No of days birds present			0	0	0	30	31	30	31	31	0	0	0	0	
Total hours each month			0	0	0	452.67	544.6235	570.945	568.7725	498.976	0	0	0	0	2635.987

Total hours per year
2635.987
**Mean daylight hours taken from www.shetland.climatetemps.com/sunlight.php

Method 1 - Birds using the windfarm airspace (to be used for birds that fly across the site using a variety of different flight paths)
Number of bird transits through the rotors per annum $=\quad 23.93$
Average collision risk for bird passing through rotor $=\quad 10.4 \%$
Number of birds potentially killed by rotors per annum = 2.48

NB: The above calculation assumes no avoidance
Correcting for 95% avoidance rate: Correcting for 98% avoidance rate:
Number of birds potentially killed by rotors per annum =

Correcting for 99\% avoidance rate:
Number of birds potentially killed by rotors per annum $=$

Correcting for 99.5% avoidance rate:
Number of birds potentially killed by rotors per annum $=$

Energy Isles Wind Farm

Bird Dimensions
Species
length (m)
wing span (m)
speed (m/sec)
Turbine Dimensions
Height of tower (m)
Blade length (m)
Max blade height (m)
Min blade height (m)
Depth of rotor (m)
Wind Farm Dimensions No of turbines

Site area (m2)
Turbine Specifications

K: [1D or [3D] (0 or 1)

NoBlades
MaxChord
Pitch (degrees)
Rotation period
Flight Characteristics
Flapping (0) or gliding (+1)

Survey Data
Total survey time (hours)
Period when Arctic Tern

Arctic Tern

0.34
\square 123
\square

77
200
3.651781003
23

19680000

Night adjustment
What percentage of the night is the target species active:
5 \%

Type in the number of days in each month where the target species is present within the site

Jan		Feb		Mar		Apr	May	Jun	Jul	Aug	Sep		Oct		Nov		Dec
	0		0		0	30	31	30	31	31		0		0		0	0

Enter the date of each record, the time the bird(s) was recorded in the collision risk area and the number of birds on a separat Bird occupancy is automatically calculated.

Date	Time observed (seconds)	Number of birds	Bird Occupancy in flig
$22 / 05 / 2016$	125	2	250
$27 / 05 / 2016$	210	4	840
$27 / 05 / 2016$	25	1	25
$01 / 06 / 2016$	35	2	70
$01 / 06 / 2016$	15	2	30
$06 / 06 / 2016$	70	1	70
$18 / 07 / 2016$	34	2	68
$18 / 07 / 2016$	96	2	192
$19 / 07 / 2016$	45	1	45
$22 / 07 / 2016$	107	4	428
$22 / 07 / 2016$	171	1	171
Total	$\mathbf{9 3 3}$	$\mathbf{2 2}$	$\mathbf{2 1 8 9}$

Method 1 - Birds using the windfarm airspace

(to be used for birds that fly across the site using a variety of different flight paths)

```
= data input required
= model calculates value
```


Step 1

Go to Data Input

Input data about the species that is being assessed - body length, wing span and flight speed Input data on turbine dimensions
Input data on wind farm area
Input data on turbine dimensions and specification
Input all vantage point data for the species that is being assessed - number of birds and flight time within the study area Input the number of days for each month where the species is likely to be present within the site
Input days for those months where the species is likely to be present within the site
Input the appropriate night time correction factor for the species being assessed, e.g. a 25% nocturnal flight time correction was proposed by Band et al for geese. This correction cannot be applied to all species, for example raptors.

Step 2

Go to Collision Risk
Final collision risk estimates are highlighted
Only use the collision risk estimate for the method that has been used

Scottish Natural Heritage: Calculating a theoretical collision risk assuming no avoiding action

Site Name: Energy Isles Wind Farm	$=$ data input required
	$=$ model calculates value

Stage 1: Number of birds flying through rotors

Input Parameters

Bird Dimensions Species	Arctic Tern	Bird Flight Data No of birds	22
length (m)	0.34	Time spent in V_{w} (sec)	40070.66
wing span (m)	0.8		
speed (m/sec)	10		
Turbine Dimensions		Wind Farm Dimen	
Height of tower (m)	123	No of turbines	23
Blade length (m)	77		
Max blade height (m)	200		
Min blade height (m)	46	Site Area (m2)	19680000
Depth of rotor (m)	3.651781		

Method 1 - Birds using the windfarm airspace

(to be used for birds that fly across the site using a variety of different flight paths)

Comments

Area is equivalent to the total area visible from VPs 1, 2, 3 and 6
rotor front to back, and I is the bird length

Estimate bird occupancy n within V_{w} This is the number of birds multiplied by the time spent within V_{w} (per season/year)

Bird occupancy of V_{r}
$\mathrm{n} \times\left(\mathrm{V}_{\mathrm{r}} / \mathrm{V}_{\mathrm{w}}\right)$ bird-seconds

Time taken for a bird to make transit through and completely clear the rotors $t=(d+I) / v$ where v is bird speed $(m / s e c)$

Calculate number of bird transits through
the rotors $=\mathrm{nx}\left(\mathrm{V}_{\mathrm{r}} / \mathrm{V}_{\mathrm{w}}\right) / \mathrm{t}$
$\mathrm{n}=$
40070.66 secs per yr
occupancy $=$
$t=$
transits $=$ \square

Bird occupancy is based on observations of birds flying through rotor-swept area

Speed should be assessed in the field but published values are available

Number of bird transits through the rotors per annum $=$

CALCULATION OF COLLISION RISK FOR BIRD PASSING THROUGH ROTOR AREA

Input parameters regarding the turbine specification will need to be obtained from the design engineers or manufacturers.

Bird survey data

Date	Time observed (seconds)		Number of birds	Bird Occupancy in flight risk volum
TOTAL	933		22	2189
TOTAL SURVEY TIME	144 hours	or	518400 seconds	

Period when Arctic Tern likely to be on site (see below) =

Assumptions (write in any assumptions that have been included in the model)
Assumption 1: The flying period extends from dawn to dusk and includes 25% of night
Assumption 2:
Assumption 3
Assumption 4
Proportion of time during which a collision may occur $=$
Arctic Tern flight time = 2189 seconds
in
Therefore in 5 months $=\quad 40070.66$ seconds

9489553 (in each year)
518400 seconds survey time

Number of hours birds are potentially active during winter (from Band et al, in press)
Note: This table is only relevant when calculating collision risk for goose species. It provides an adjustment for nocturnal

		Jan	Feb		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nox	Dec	
Mean Daylight hours**			6.8	9.08	11.78	14.62	17.23	18.77	18.05	15.68	12.88	10.05	7.45	5.98	
Mean Nocturnal hrs*	5		0.86	0.746	0.611	0.469	0.3385	0.2615	0.2975	0.416	0.556	0.6975	0.8275	0.901	
Combined Daily Mean			7.66	9.826	12.391	15.089	17.5685	19.0315	18.3475	16.096	13.436	10.7475	8.2775	6.881	
No of days birds present			0	0	0	30	31	30	31	31	0	0	0	0	
Total hours each month			0	0	0	452.67	544.6235	570.945	568.7725	498.976	0	0	0	0	2635.987

Total hours per year
2635.987
**Mean daylight hours taken from www.shetland.climatetemps.com/sunlight.php

Method 1 - Birds using the windfarm airspace (to be used for birds that fly across the site using a variety of different flight paths)
Number of bird transits through the rotors per annum = 43.61
Average collision risk for bird passing through rotor $=\quad 11.3 \%$
Number of birds potentially killed by rotors per annum = 4.91

NB: The above calculation assumes no avoidance
Correcting for 95% avoidance rate:
Number of birds potentially killed by rotors per annum $=$

Correcting for 98\% avoidance rate:
Number of birds potentially killed by rotors per annum =

Correcting for 99\% avoidance rate:
Number of birds potentially killed by rotors per annum $=$

Energy Isles Wind Farm

Bird Dimensions
Species
length (m)
wing span (m)
speed (m/sec)
Turbine Dimensions
Height of tower (m)
Blade length (m)
Max blade height (m)
Min blade height (m)
Depth of rotor (m)
Wind Farm Dimensions No of turbines

Site area (m2)
Turbine Specifications

K: [1D or [3D] (0 or 1)

NoBlades
MaxChord
Pitch (degrees)
Rotation period
Flight Characteristics
Flapping (0) or gliding (+1)

Survey Data
Total survey time (hours)
Period when Arctic Tern

Arctic Tern

0.34
\square 123
\square

77
200
3.651781003
23

19680000

Night adjustment
What percentage of the night is the target species active:
5 \%

Type in the number of days in each month where the target species is present within the site

Jan		Feb		Mar		Apr	May	Jun	Jul	Aug	Sep		Oct		Nov		Dec
	0		0		0	30	31	30	31	31		0		0		0	0

Enter the date of each record, the time the bird(s) was recorded in the collision risk area and the number of birds on a separate Bird occupancy is automatically calculated.
Date Time observed (seconds)

31	Number
15	
30	
90	
$\mathbf{1 6 6}$	

Bird Occupancy 62

08/06/2018
05/07/2018 30
09/07/2018
166
2180

Method 1 - Birds using the windfarm airspace

(to be used for birds that fly across the site using a variety of different flight paths)

```
= data input required
= model calculates value
```


Step 1

Go to Data Input

Input data about the species that is being assessed - body length, wing span and flight speed Input data on turbine dimensions
Input data on wind farm area
Input data on turbine dimensions and specification
Input all vantage point data for the species that is being assessed - number of birds and flight time within the study area Input the number of days for each month where the species is likely to be present within the site
Input days for those months where the species is likely to be present within the site
Input the appropriate night time correction factor for the species being assessed, e.g. a 25% nocturnal flight time correction was proposed by Band et al for geese. This correction cannot be applied to all species, for example raptors.

Step 2

Go to Collision Risk
Final collision risk estimates are highlighted
Only use the collision risk estimate for the method that has been used

Scottish Natural Heritage: Calculating a theoretical collision risk assuming no avoiding action

Site Name: Energy Isles Wind Farm	$=$ data input required
	$=$ model calculates value

Stage 1: Number of birds flying through rotors

Input Parameters

Bird Dimensions Species	Arctic Tern	Bird Flight Data No of birds	8
length (m)	0.34	Time spent in V_{w} (sec)	6352.00
wing span (m)	0.8		
speed (m/sec)	10		
Turbine Dimensions		Wind Farm Dimen	
Height of tower (m)	123	No of turbines	23
Blade length (m)	77		
Max blade height (m)	200		
Min blade height (m)	46	Site Area (m2)	19680000
Depth of rotor (m)	3.651781		

Method 1 - Birds using the windfarm airspace

(to be used for birds that fly across the site using a variety of different flight paths)

Comments

Area is equivalent to the total area visible from VPs 1, 2, 3 and 6
rotor front to back, and I is the bird length

Estimate bird occupancy n within V_{w} This is the number of birds multiplied by the time spent within V_{w} (per season/year)

Bird occupancy of V_{r}
$\mathrm{n} \times\left(\mathrm{V}_{\mathrm{r}} / \mathrm{V}_{\mathrm{w}}\right)$ bird-seconds

Time taken for a bird to make transit through and completely clear the rotors $t=(d+I) / v$ where v is bird speed $(m / s e c)$

Calculate number of bird transits through
the rotors $=\mathrm{nx}\left(\mathrm{V}_{\mathrm{r}} / \mathrm{V}_{\mathrm{w}}\right) / \mathrm{t}$
occupancy $=$
$t=$
transits $=$

Bird occupancy is based on observations of birds flying through rotor-swept area

Speed should be assessed in the field but published values are available

Number of bird transits through the rotors per annum $=$

CALCULATION OF COLLISION RISK FOR BIRD PASSING THROUGH ROTOR AREA

Input parameters regarding the turbine specification will need to be obtained from the design engineers or manufacturers.

Bird survey data

Date	Time observed (seconds)		Number of birds	Bird Occupancy in flight risk volum
TOTAL	166		8	347
TOTAL SURVEY TIME	144 hours	or	518400 seconds	

Period when Arctic Tern likely to be on site (see below) =

Assumptions (write in any assumptions that have been included in the model)
Assumption 1: The flying period extends from dawn to dusk and includes 25% of night
Assumption 2:
Assumption 3
Assumption 4
Proportion of time during which a collision may occur $=$
Arctic Tern flight time $=\quad 347$ seconds
Therefore in 5 months $=$
in
6352.00 seconds

9489553 (in each year)
518400 seconds survey time

Number of hours birds are potentially active during winter (from Band et al, in press)
Note: \quad This table is only relevant when calculating collision risk for goose species. It provides an adjustment for nocturnal

		Jan	Feb		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nox	Dec	
Mean Daylight hours**			6.8	9.08	11.78	14.62	17.23	18.77	18.05	15.68	12.88	10.05	7.45	5.98	
Mean Nocturnal hrs*	5		0.86	0.746	0.611	0.469	0.3385	0.2615	0.2975	0.416	0.556	0.6975	0.8275	0.901	
Combined Daily Mean			7.66	9.826	12.391	15.089	17.5685	19.0315	18.3475	16.096	13.436	10.7475	8.2775	6.881	
No of days birds present			0	0	0	30	31	30	31	31	0	0	0	0	
Total hours each month			0	0	0	452.67	544.6235	570.945	568.7725	498.976	0	0	0	0	2635.987

Total hours per year
2635.987
**Mean daylight hours taken from www.shetland.climatetemps.com/sunlight.php

Method 1 - Birds using the windfarm airspace (to be used for birds that fly across the site using a variety of different flight paths)
Number of bird transits through the rotors per annum $=6.91$
Average collision risk for bird passing through rotor $=\quad 11.3 \%$
Number of birds potentially killed by rotors per annum = 0.78

NB: The above calculation assumes no avoidance
Correcting for 95% avoidance rate:
Number of birds potentially killed by rotors per annum $=$

Correcting for 98% avoidance rate:
Number of birds potentially killed by rotors per annum =

Correcting for 99\% avoidance rate:
Number of birds potentially killed by rotors per annum =

Energy Isles Wind Farm

| Bird Dimensions | |
| :--- | ---: | ---: |
| Species | Fulmar |
| length (m) | 0.48 |
| wing span (m) | 1.07 |
| speed $(\mathrm{m} / \mathrm{sec})$ | 13 |

Turbine Dimensions

Height of tower (m)	123
Blade length (m)	77
Max blade height (m)	200
Min blade height (m)	46

Min blade height (m) 46

Depth of rotor (m)

$$
3.651781003
$$

Wind Farm Dimensions

Site area (m2)
19680000
Turbine Specifications
K: [1D or [3D] (0 or 1)
NoBlades
MaxChord
Pitch (degrees)
Rotation period

Flight Characteristics
Flapping (0) or gliding (+1)
0
Survey Data
Total survey time (hours)
Period when Fulmar
likely to be on site.

Jan	Feb		Mar		Apr		May	Jun	Jul	Aug	Sep		Oct		Nov		Dec	
	0		0		0	30	31	30	31	31		0		0		0		0

Night adjustment
What percentage of the night is the target species active:
5 \%

Type in the number of days in each month where the target species is present within the site

Enter the date of each record, the time the bird(s) was recorded in the collision risk area and the number of birds on a separat Bird occupancy is automatically calculated.

Date	Time observed (seconds)	Number of birds	Bird Occupancy in flig
$05 / 04 / 2016$	15	1	15
$18 / 07 / 2016$	106	2	212
$19 / 07 / 2016$	66	2	132
$19 / 07 / 2016$	129	1	129
$10 / 08 / 2016$	225	1	225
$12 / 08 / 2016$	375	1	375
$12 / 08 / 2016$	60	1	60
$12 / 08 / 2016$	10	1	10
$12 / 08 / 2016$	130	1	130
$24 / 08 / 2016$	60	1	60
$24 / 08 / 2016$	130	1	130
$24 / 08 / 2016$	150	1	150
$24 / 08 / 2016$	45	1	45
$24 / 08 / 2016$	175	5	875
$31 / 08 / 2016$	220	8	1760
$31 / 08 / 2016$	60	1	60
$31 / 08 / 2016$	100	2	200
$31 / 08 / 2016$	135	4	540
$31 / 08 / 2016$	100	2	200
Total	2291	37	5308

Method 1 - Birds using the windfarm airspace

(to be used for birds that fly across the site using a variety of different flight paths)

```
= data input required
= model calculates value
```


Step 1

Go to Data Input

Input data about the species that is being assessed - body length, wing span and flight speed Input data on turbine dimensions
Input data on wind farm area
Input data on turbine dimensions and specification
Input all vantage point data for the species that is being assessed - number of birds and flight time within the study area Input the number of days for each month where the species is likely to be present within the site
Input days for those months where the species is likely to be present within the site
Input the appropriate night time correction factor for the species being assessed, e.g. a 25% nocturnal flight time correction was proposed by Band et al for geese. This correction cannot be applied to all species, for example raptors.

Step 2

Go to Collision Risk
Final collision risk estimates are highlighted
Only use the collision risk estimate for the method that has been used

Scottish Natural Heritage: Calculating a theoretical collision risk assuming no avoiding action

Site Name: Energy Isles Wind Farm	$=$ data input required
	$=$ model calculates value

Stage 1: Number of birds flying through rotors

Input Parameters

Bird Dimensions Species	Fulmar	Bird Flight Data No of birds	37
length (m)	0.48	Time spent in V_{w} (sec)	97165.41
wing span (m)	1.07		
speed (m/sec)	13		
Turbine Dimensions		Wind Farm Dimen	
Height of tower (m)	123	No of turbines	23
Blade length (m)	77		
Max blade height (m)	200		
Min blade height (m)	46	Site Area (m2)	19680000
Depth of rotor (m)	3.651781		

Method 1 - Birds using the windfarm airspace

(to be used for birds that fly across the site using a variety of different flight paths)

Step No	Description of Calculation Identify 'flight risk volume' V_{w} ' which is the area of the wind farm multiplied by the height of the turbines		
2	Calculate the combined volume swept out by the rotors $V_{r}=N x R^{2} x(d+I)$ where N is the number of turbines, d is the depth of the	$\mathrm{V}_{\mathrm{w}}=$	Calculation
:---:			
$3936000000 \mathrm{~m}^{3}$			

Comments

Area is equivalent to the total area visible from VPs 1, 2, 3 and 6
rotor front to back, and I is the bird length

Estimate bird occupancy n within V_{w} This is the number of birds multiplied by the time spent within V_{w} (per season/year)

Bird occupancy of V_{r}
$\mathrm{n} \times\left(\mathrm{V}_{\mathrm{r}} / \mathrm{V}_{\mathrm{w}}\right)$ bird-seconds

Time taken for a bird to make transit through and completely clear the rotors $t=(d+I) / v$ where v is bird speed $(m / s e c)$

Calculate number of bird transits through the rotors $=\mathrm{nx}\left(\mathrm{V}_{\mathrm{r}} / \mathrm{V}_{\mathrm{w}}\right) / \mathrm{t}$
97165.41 secs per yr
occupancy $=$
$t=$
transits $=$
137.47 bird transits per annum

Number of bird transits through the rotors per annum $=$

Bird occupancy is based on observations of birds flying through rotor-swept area

Speed should be assessed in the field but published values are available

CALCULATION OF COLLISION RISK FOR BIRD PASSING THROUGH ROTOR AREA

Input parameters regarding the turbine specification will need to be obtained from the design engineers or manufacturers.

Bird survey data

Assumptions (write in any assumptions that have been included in the model)
Assumption 1: The flying period extends from dawn to dusk and includes 25% of night
Assumption 2:
Assumption 3
Assumption 4:

Proportion of time during which a collision may occur =
Fulmar
Therefore in flight time $=$ 5308 seconds 5 months = seconds

Number of hours birds are potentially active during winter (from Band et al in press)

		Jan	Feb		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nox	Dec
Mean Daylight hours**			6.8	9.08	11.78	14.62	17.23	18.77	18.05	15.68	12.88	10.05	7.45	5.98
Mean Nocturnal hrs*	5		0.86	0.746	0.611	0.469	0.3385	0.2615	0.2975	0.416	0.556	0.6975	0.8275	0.901
Combined Daily Mean			7.66	9.826	12.391	15.089	17.5685	19.0315	18.3475	16.096	13.436	10.7475	8.2775	6.881
No of days birds present			0	0	0	30	31	30	31	31	0	0	0	0
Total hours each month			0	0	0	452.67	544.6235	570.945	568.7725	498.976	0	0	0	0
Total hours per year			5.987											

9489553 (in each year)
518400 seconds survey time
**Mean daylight hours taken from www.shetland.climatetemps.com/sunlight.php

Method 1 - Birds using the windfarm airspace (to be used for birds that fly across the site using a variety of different flight paths)
Number of bird transits through the rotors per annum $=$
Average collision risk for bird passing through rotor $=$
Number of birds potentially killed by rotors per annum = 13.64

NB: The above calculation assumes no avoidance
Correcting for 95% avoidance rate:
Number of birds potentially killed by rotors per annum $=$
Correcting for 98\% avoidance rate:
Number of birds potentially killed by rotors per annum =

Correcting for 99\% avoidance rate:
Number of birds potentially killed by rotors per annum =
Correcting for 99.5\% avoidance rate:
Number of birds potentially killed by rotors per annum =

Energy Isles Wind Farm

| Bird Dimensions | |
| :--- | ---: | ---: |
| Species | Fulmar |
| length (m) | 0.48 |
| wing span (m) | 1.07 |
| speed $(\mathrm{m} / \mathrm{sec})$ | 13 |

Turbine Dimensions

Height of tower (m)	123
Blade length (m)	77
Max blade height (m)	200
Min blade height (m)	46

Min blade height (m) 46

Depth of rotor (m)

$$
3.651781003
$$

Wind Farm Dimensions

Site area (m2)
19680000
Turbine Specifications
K: [1D or [3D] (0 or 1)
NoBlades
MaxChord
Pitch (degrees)
Rotation period

Flight Characteristics
Flapping (0) or gliding (+1)
0
Survey Data
Total survey time (hours)
Period when Fulmar
likely to be on site.

Jan	Feb		Mar		Apr		May	Jun	Jul	Aug	Sep		Oct		Nov		Dec	
	0		0		0	30	31	30	31	31		0		0		0		0

Night adjustment
What percentage of the night is the target species active:
5 \%

Type in the number of days in each month where the target species is present within the site

Enter the date of each record, the time the bird(s) was recorded in the collision risk area and the number of birds on a separate
Bird occupancy is automatically calculated.

| Date | Time observed (seconds) | Number of birds | Bird Occupancy in flig |
| ---: | ---: | ---: | ---: | ---: |
| 18/05/2018 | 110 | 1 | 110 |
| $05 / 07 / 2018$ | 100 | 1 | 100 |
| $05 / 07 / 2018$ | 60 | 1 | 60 |
| $05 / 07 / 2018$ | 15 | 1 | 15 |
| $07 / 08 / 2018$ | 30 | 4 | 120 |
| $07 / 08 / 2018$ | 55 | 1 | 55 |
| $07 / 08 / 2018$ | 150 | 2 | 300 |
| $07 / 08 / 2018$ | 15 | 1 | 15 |
| $24 / 08 / 2018$ | 85 | 3 | 255 |
| $24 / 08 / 2018$ | 15 | 1 | 15 |
| $24 / 08 / 2018$ | 15 | 1 | $\mathbf{1 5}$ |
| Total | $\mathbf{6 5 0}$ | $\mathbf{1 7}$ | $\mathbf{1 0 6 0}$ |

Method 1 - Birds using the windfarm airspace

(to be used for birds that fly across the site using a variety of different flight paths)

```
= data input required
= model calculates value
```


Step 1

Go to Data Input

Input data about the species that is being assessed - body length, wing span and flight speed Input data on turbine dimensions
Input data on wind farm area
Input data on turbine dimensions and specification
Input all vantage point data for the species that is being assessed - number of birds and flight time within the study area Input the number of days for each month where the species is likely to be present within the site
Input days for those months where the species is likely to be present within the site
Input the appropriate night time correction factor for the species being assessed, e.g. a 25% nocturnal flight time correction was proposed by Band et al for geese. This correction cannot be applied to all species, for example raptors.

Step 2

Go to Collision Risk
Final collision risk estimates are highlighted
Only use the collision risk estimate for the method that has been used

Scottish Natural Heritage: Calculating a theoretical collision risk assuming no avoiding action

Site Name: Energy Isles Wind Farm	$=$ data input required
	$=$ model calculates value

Stage 1: Number of birds flying through rotors

Input Parameters

Bird Dimensions Species	Fulmar	Bird Flight Data No of birds	17
length (m)	0.48	Time spent in V_{w} (sec)	19403.79
wing span (m)	1.07		
speed (m/sec)	13		
Turbine Dimensions		Wind Farm Dimen	
Height of tower (m)	123	No of turbines	23
Blade length (m)	77		
Max blade height (m)	200		
Min blade height (m)	46	Site Area (m2)	19680000
Depth of rotor (m)	3.651781		

Method 1 - Birds using the windfarm airspace

(to be used for birds that fly across the site using a variety of different flight paths)

Step No	Description of Calculation Identify 'flight risk volume' V_{w} ' which is the area of the wind farm multiplied by the height of the turbines		
2	Calculate the combined volume swept out by the rotors $V_{r}=N \times R^{2} \times(d+I)$ where N is the number of turbines, d is the depth of the		Calculation
:---:			
$3936000000 \mathrm{~m}^{3}$			

Comments

Area is equivalent to the total area visible from VPs 1, 2, 3 and 6
rotor front to back, and I is the bird length

Estimate bird occupancy n within V_{w} This is the number of birds multiplied by the time spent within V_{w} (per season/year)

Bird occupancy of V_{r}
$\mathrm{n} \times\left(\mathrm{V}_{\mathrm{r}} / \mathrm{V}_{\mathrm{w}}\right)$ bird-seconds

Time taken for a bird to make transit through and completely clear the rotors $t=(d+l) / v$ where v is bird speed $(\mathrm{m} / \mathrm{sec})$

Calculate number of bird transits through
the rotors $=\mathrm{nx}\left(\mathrm{V}_{\mathrm{r}} / \mathrm{V}_{\mathrm{w}}\right) / \mathrm{t}$
19403.79 secs per yr
occupancy $=$
$t=$
transits $=$
27.45 bird transits per annum

Bird occupancy is based on observations of birds flying through rotor-swept area

Speed should be assessed in the field but published values are available

CALCULATION OF COLLISION RISK FOR BIRD PASSING THROUGH ROTOR AREA

Input parameters regarding the turbine specification will need to be obtained from the design engineers or manufacturers.

Bird survey data

Assumptions (write in any assumptions that have been included in the model)
Assumption 1: The flying period extends from dawn to dusk and includes 25% of night
Assumption 2:
Assumption 3 :
Assumption 4:
Proportion of time during which a collision may occur =
Fulmar flight time $=1060$ seconds in
Therefore in 5 months =
19403.79 seconds

9489553 (in each year)
518400 seconds survey time

Number of hours birds are potentially active during winter (from Band et al, in press)
Note: This table is only relevant when calculating collision risk for goose species. It provides an adjustment for nocturnal

		Jan	Feb		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nox	Dec	
Mean Daylight hours**			6.8	9.08	11.78	14.62	17.23	18.77	18.05	15.68	12.88	10.05	7.45	5.98	
Mean Nocturnal hrs*	5		0.86	0.746	0.611	0.469	0.3385	0.2615	0.2975	0.416	0.556	0.6975	0.8275	0.901	
Combined Daily Mean			7.66	9.826	12.391	15.089	17.5685	19.0315	18.3475	16.096	13.436	10.7475	8.2775	6.881	
No of days birds present			0	0	0	30	31	30	31	31	0	0	0	0	
Total hours each month			0	0	0	452.67	544.6235	570.945	568.7725	498.976	0	0	0	0	2635.987

Total hours per year
2635.987
**Mean daylight hours taken from www.shetland.climatetemps.com/sunlight.php

Method 1 - Birds using the windfarm airspace (to be used for birds that fly across the site using a variety of different flight paths)
Number of bird transits through the rotors per annum = 27.45
Average collision risk for bird passing through rotor $=\quad 9.9 \%$
Number of birds potentially killed by rotors per annum = 2.72

NB: The above calculation assumes no avoidance
Correcting for 95% avoidance rate:
Number of birds potentially killed by rotors per annum $=$

Correcting for 99\% avoidance rate:
Number of birds potentially killed by rotors per annum $=$

Energy Isles Wind Farm

Bird Dimensions	Curlew
Species	0.55
length (m)	0.9
wing span (m)	14

speed (m/sec)

Turbine Dimensions
Height of tower (m) 123
Blade length (m)
Max blade height (m)
Min blade height (m)
Depth of rotor (m)
Wind Farm Dimensions

Site area (m2)
Turbine Specifications

K: [1D or [3D] (0 or 1)

NoBlades
MaxChord
Pitch (degrees)
Rotation period
Flight Characteristics
Flapping (0) or gliding (+1)
Survey Data
Total survey time (hours)
Period when Curlew

0
Jan Feb Mar Apr

= data input required
 = model calculates value

Sources of speed and dimension information: Bruderer \& Boldt (2001); BTO Bird Facts

Note, the maximum height of turbines $5,16,19,20,24,25,26,27$ and 28 is lower, at 180 m

The area is equal to the total visible area (at a minimum 30 m above ground level) from vantage points $1,2,3$ and 6 . The extent of this area is shown on Figure 6.1

Night adjustment
What percentage of the night is the target species active?
5%

Type in the number of days in each month where the target species is present within the site
0 Feb $0 \quad 0$

Total number of months when Curlew likely to be present: \square
Enter the date of each record, the time the bird(s) was recorded in the collision risk area and the number of birds on a separate Bird occupancy is automatically calculated.

| Date | Time observed (seconds) | Number of birds | Bird Occupancy in flig |
| :--- | ---: | :--- | ---: | ---: |
| $11 / 04 / 2016$ | 80 | 1 | 80 |
| $22 / 05 / 2016$ | 120 | 1 | 120 |
| $22 / 05 / 2016$ | 45 | 1 | 45 |
| $22 / 05 / 2016$ | 75 | 1 | 75 |
| $02 / 06 / 2016$ | 30 | 1 | 30 |
| $06 / 06 / 2016$ | 190 | 1 | 190 |
| $06 / 06 / 2016$ | 95 | 1 | 95 |
| $07 / 06 / 2016$ | 90 | 1 | 90 |
| Total | $\mathbf{7 2 5}$ | $\mathbf{8}$ | $\mathbf{7 2 5}$ |

Method 1 - Birds using the windfarm airspace

(to be used for birds that fly across the site using a variety of different flight paths)

```
= data input required
= model calculates value
```


Step 1

Go to Data Input

Input data about the species that is being assessed - body length, wing span and flight speed Input data on turbine dimensions
Input data on wind farm area
Input data on turbine dimensions and specification
Input all vantage point data for the species that is being assessed - number of birds and flight time within the study area Input the number of days for each month where the species is likely to be present within the site
Input days for those months where the species is likely to be present within the site
Input the appropriate night time correction factor for the species being assessed, e.g. a 25% nocturnal flight time correction was proposed by Band et al for geese. This correction cannot be applied to all species, for example raptors.

Step 2

Go to Collision Risk
Final collision risk estimates are highlighted
Only use the collision risk estimate for the method that has been used

Scottish Natural Heritage: Calculating a theoretical collision risk assuming no avoiding action

Site Name: Energy Isles Wind Farm	$=$ data input required
	$=$ model calculates value

Stage 1: Number of birds flying through rotors
Input Parameters

Bird Dimensions		Bird Flight Data No of birds	8
Species	Curlew		
length (m)	0.55	Time spent in V_{w} ($\mathbf{s e c}$)	13271.46
wing span (m)	0.9		
speed (m/sec)	14		
Turbine Dimensions		Wind Farm Dimen	
Height of tower (m)	123	No of turbines	23
Blade length (m)	77		
Max blade height (m)	200		
Min blade height (m)	46	Site Area (m^{2})	19680000
Depth of rotor (m)	3.651781		

Method 1 - Birds using the windfarm airspace

Step No

 1 Description of Calculation1 Identify 'flight risk volume' V_{w} ' which is the area of the wind farm multiplied by the height of the turbines

2
Calculate the combined volume swept out by the rotors
$V_{r}=N \times \pi R^{2} \times(d+I)$ where N is the
number of turbines, d is the depth of the
rotor front to back, and I is the bird length

Estimate bird occupancy n within V_{w} This is the number of birds multiplied by the time spent within V_{w} (per season/year)

Bird occupancy of V_{r}
$\mathrm{n} \times\left(\mathrm{V}_{\mathrm{r}} / \mathrm{V}_{\mathrm{w}}\right)$ bird-seconds

Time taken for a bird to make transit through and completely clear the rotors $t=(d+l) / v$ where v is bird speed $(\mathrm{m} / \mathrm{sec})$

Calculate number of bird transits through
the rotors $=\mathrm{nx}\left(\mathrm{V}_{\mathrm{r}} / \mathrm{V}_{\mathrm{w}}\right) / \mathrm{t}$
13271.46 secs per yr
occupancy $=$
$t=$
transits $=$
20.22 bird transits per annum

Number of bird transits through the rotors per annum $=$

Bird occupancy is based on observations of birds flying through rotor-swept area

Speed should be assessed in the field but published values are available

CALCULATION OF COLLISION RISK FOR BIRD PASSING THROUGH ROTOR AREA

Input parameters regarding the turbine specification will need to be obtained from the design engineers or manufacturers.

Bird survey data

Assumptions (write in any assumptions that have been included in the model)
Assumption 1: The flying period extends from dawn to dusk and includes 25% of night
Assumption 2:
Assumption 3 :
Assumption 4:
Proportion of time during which a collision may occur $=$
Curlew flight time $=$ 725 seconds in
Therefore in
5 months =
13271.46 seconds

9489553 (in each year)
ren
Number of hours birds are potentially active during winter (from Band et al, in press)
Note: This table is only relevant when calculating collision risk

		Jan	Feb		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nox	Dec
Mean Daylight hours**			6.8	9.08	11.78	14.62	17.23	18.77	18.05	15.68	12.88	10.05	7.45	5.98
Mean Nocturnal hrs*	5		0.86	0.746	0.611	0.469	0.3385	0.2615	0.2975	0.416	0.556	0.6975	0.8275	0.901
Combined Daily Mean			7.66	9.826	12.391	15.089	17.5685	19.0315	18.3475	16.096	13.436	10.7475	8.2775	6.881
No of days birds present			0	0	0	30	31	30	31	31	0	0	0	0
Total hours each month			0	0	0	452.67	544.6235	570.945	568.7725	498.976	0	0	0	0

Total hours each month
2635.987
**Mean daylight hours taken from www.shetland.climatetemps.com/sunlight.php

Method 1 - Birds using the windfarm airspace (to be used for birds that fly across the site using a variety of different flight paths)
Number of bird transits through the rotors per annum = 20.22
Average collision risk for bird passing through rotor $=\quad 9.7 \%$
Number of birds potentially killed by rotors per annum = 1.97

NB: The above calculation assumes no avoidance
Correcting for 95% avoidance rate:
Number of birds potentially killed by rotors per annum $=$

Correcting for 99\% avoidance rate:
Number of birds potentially killed by rotors per annum $=$

Energy Isles Wind Farm

Bird Dimensions	Curlew
Species	0.55
length (m)	0.9
wing span (m)	14

speed (m/sec)

Turbine Dimensions
Height of tower (m) 123
Blade length (m)
Max blade height (m)
Min blade height (m)
Depth of rotor (m)
Wind Farm Dimensions

Site area (m2)
Turbine Specifications

K: [1D or [3D] (0 or 1)

NoBlades
MaxChord
Pitch (degrees)
Rotation period
Flight Characteristics
Flapping (0) or gliding (+1)
Survey Data
Total survey time (hours)
Period when Curlew

0
Jan Feb Mar Apr

= data input required
 = model calculates value

Sources of speed and dimension information: Bruderer \& Boldt (2001); BTO Bird Facts

Note, the maximum height of turbines $5,16,19,20,24,25,26,27$ and 28 is lower, at 180 m

The area is equal to the total visible area (at a minimum 30 m above ground level) from vantage points $1,2,3$ and 6 . The extent of this area is shown on Figure 6.1

Night adjustment
What percentage of the night is the target species active?
5%

Type in the number of days in each month where the target species is present within the site
0 Feb $0 \quad 0$

Enter the date of each record, the time the bird(s) was recorded in the collision risk area and the number of birds on a separate Bird occupancy is automatically calculated.

15	Number of birds	Bird Occupancy in
15	3	
10	1	134
134	3	
68	1	
35	4	$\mathbf{2 9}$
$\mathbf{2 6 2}$	$\mathbf{1 2}$	

Method 1 - Birds using the windfarm airspace

(to be used for birds that fly across the site using a variety of different flight paths)

```
= data input required
= model calculates value
```


Step 1

Go to Data Input

Input data about the species that is being assessed - body length, wing span and flight speed Input data on turbine dimensions
Input data on wind farm area
Input data on turbine dimensions and specification
Input all vantage point data for the species that is being assessed - number of birds and flight time within the study area Input the number of days for each month where the species is likely to be present within the site
Input days for those months where the species is likely to be present within the site
Input the appropriate night time correction factor for the species being assessed, e.g. a 25% nocturnal flight time correction was proposed by Band et al for geese. This correction cannot be applied to all species, for example raptors.

Step 2

Go to Collision Risk
Final collision risk estimates are highlighted
Only use the collision risk estimate for the method that has been used

Scottish Natural Heritage: Calculating a theoretical collision risk assuming no avoiding action

Site Name: Energy Isles Wind Farm = data input required
Stage 1: Number of birds flying through rotors
Input Parameters

Bird Dimensions		Bird Flight Data No of birds	
Species	Curlew		
length (m)	0.55	Time spent in V_{w} ($\mathbf{s e c}$)	5381.81
wing span (m)	0.9		
speed (m/sec)	14		
Turbine Dimensions		Wind Farm Dimensions	
Height of tower (m)	123	No of turbines	23
Blade length (m)	77		
Max blade height (m)	200		
Min blade height (m)	46	Site Area (m^{2})	19680000
Depth of rotor (m)	3.651781		

Method 1 - Birds using the windfarm airspace

Step No

 1 Description of Calculation1 Identify 'flight risk volume' V_{w} ' which is the area of the wind farm multiplied by the height of the turbines

2
Calculate the combined volume swept out by the rotors
$V_{r}=N \times \pi R^{2} \times(d+I)$ where N is the
number of turbines, d is the depth of the
rotor front to back, and I is the bird length

Estimate bird occupancy n within V_{w} This is the number of birds multiplied by the time spent within V_{w} (per season/year)

Bird occupancy of V_{r}
$\mathrm{n} \times\left(\mathrm{V}_{\mathrm{r}} / \mathrm{V}_{\mathrm{w}}\right)$ bird-seconds

Time taken for a bird to make transit through and completely clear the rotors $t=(d+I) / v$ where v is bird speed $(m / s e c)$

Calculate number of bird transits through
the rotors $=\mathrm{nx}\left(\mathrm{V}_{\mathrm{r}} / \mathrm{V}_{\mathrm{w}}\right) / \mathrm{t}$
5381.81 secs per yr
occupancy $=$
$t=$
transits $=$
8.20 bird transits per annum

Bird occupancy is based on observations of birds flying through rotor-swept area

Speed should be assessed in the field but published values are available

CALCULATION OF COLLISION RISK FOR BIRD PASSING THROUGH ROTOR AREA

Input parameters regarding the turbine specification will need to be obtained from the design engineers or manufacturers.

Bird survey data

Assumptions (write in any assumptions that have been included in the model)
Assumption 1: The flying period extends from dawn to dusk and includes 25% of night
Assumption 2:
Assumption 3 :
Assumption 4:
Proportion of time during which a collision may occur $=$
Curlew flight time = 294 seconds in
Therefore in
5 months =
5381.81 seconds

9489553 (in each year)
518400 seconds survey time

Number of hours birds are potentially active during winter (from Band et al, in press)
Note: This table is only relevant when calculating collision risk for goose species. It provides an adjustment for nocturnal

		Jan	Feb		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nox	Dec	
Mean Daylight hours**			6.8	9.08	11.78	14.62	17.23	18.77	18.05	15.68	12.88	10.05	7.45	5.98	
Mean Nocturnal hrs*	5		0.86	0.746	0.611	0.469	0.3385	0.2615	0.2975	0.416	0.556	0.6975	0.8275	0.901	
Combined Daily Mean			7.66	9.826	12.391	15.089	17.5685	19.0315	18.3475	16.096	13.436	10.7475	8.2775	6.881	
No of days birds present			0	0	0	30	31	30	31	31	0	0	0	0	
Total hours each month			0	0	0	452.67	544.6235	570.945	568.7725	498.976	0	0	0	0	2635.987

Total hours per year
2635.987
**Mean daylight hours taken from www.shetland.climatetemps.com/sunlight.php

Method 1 - Birds using the windfarm airspace (to be used for birds that fly across the site using a variety of different flight paths)
Number of bird transits through the rotors per annum = 8.20
Average collision risk for bird passing through rotor $=\quad 9.7 \%$
$\begin{array}{ll}\text { Number of birds potentially killed by rotors per annum }= & 0.80\end{array}$

NB: The above calculation assumes no avoidance
Correcting for 95% avoidance rate:
Number of birds potentially killed by rotors per annum $=$

Correcting for 98\% avoidance rate:
Number of birds potentially killed by rotors per annum =

Correcting for 99\% avoidance rate:
Number of birds potentially killed by rotors per annum $=$

Energy Isles Wind Farm

Bird Dimensions	
Species	0.41
length (m)	0.82
wing span (m)	14

speed ($\mathrm{m} / \mathrm{sec}$)
Turbine Dimensions

Height of tower (m)	123
Blade length (\mathbf{m})	77
Max blade height (\mathbf{m})	200
Min blade height (m)	46

Min blade height (m) 46
Depth of rotor (m)
3.651781003

Wind Farm Dimensions

No of turbines	23
Site area (m2)	19680000

Turbine Specifications
K: [1D or [3D] (0 or 1)
NoBlades
MaxChord
Pitch (degrees)
Rotation period

Flight Characteristics
Flapping (0) or gliding (+1)
0

Survey Data
Total survey time (hours)
144
Period when Whimbrel
likely to be on site.
Night adjustment
What percentage of the night is the target species active:
5 \%
The area is equal to the total visible area (at a minimum 30 m above ground level) from vantage points $1,2,3$ and 6. The extent of this area is shown on Figure 6.1.

Jan	Feb			Mar	Apr		May	Jun	Jul	Aug	Sep		Oct	Nov		Dec
	0		0		0	30	30	30	31	31		0	0		0	0

Enter the date of each record, the time the bird(s) was recorded in the collision risk area and the number of birds on a separate Bird occupancy is automatically calculated.

Date	Time observed (seconds)	Number of birds	Bird Occupancy in
$01 / 08 / 2018$	62	8	49
$03 / 08 / 2018$	50	4	20
$03 / 08 / 2018$	30	5	15
Total	$\mathbf{1 4 2}$	$\mathbf{1 7}$	$\mathbf{8 4}$

Method 1 - Birds using the windfarm airspace

(to be used for birds that fly across the site using a variety of different flight paths)

```
= data input required
= model calculates value
```


Step 1

Go to Data Input

Input data about the species that is being assessed - body length, wing span and flight speed Input data on turbine dimensions
Input data on wind farm area
Input data on turbine dimensions and specification
Input all vantage point data for the species that is being assessed - number of birds and flight time within the study area Input the number of days for each month where the species is likely to be present within the site
Input days for those months where the species is likely to be present within the site
Input the appropriate night time correction factor for the species being assessed, e.g. a 25% nocturnal flight time correction was proposed by Band et al for geese. This correction cannot be applied to all species, for example raptors.

Step 2

Go to Collision Risk
Final collision risk estimates are highlighted
Only use the collision risk estimate for the method that has been used

Scottish Natural Heritage: Calculating a theoretical collision risk assuming no avoiding action

Site Name: Energy Isles Wind Farm	$=$ data input required
	$=$ model calculates value

Stage 1: Number of birds flying through rotors

Input Parameters

\left.| Bird Dimensions | | Bird Flight Data | |
| :--- | ---: | :--- | ---: |
| Species | Whimbrel | | |
| No of birds | | | |$\right)$

Method 1 - Birds using the windfarm airspace

(to be used for birds that fly across the site using a variety of different flight paths)

Step No	Description of Calculation Identify 'flight risk volume' V_{w} ' which is the area of the wind farm multiplied by the height of the turbines		
2	Calculate the combined volume swept out by the rotors $V_{r}=N \times \pi R^{2} x(d+I)$ where N is the number of turbines, d is the depth of the		Calculation
:---:			
$3936000000 \mathrm{~m}^{3}$			

Comments

Area is equivalent to the total area visible from VPs 1, 2, 3 and 6
rotor front to back, and I is the bird length

Estimate bird occupancy n within V_{w} This is the number of birds multiplied by the time spent within V_{w} (per season/year)

Bird occupancy of V_{r}
$\mathrm{n} \times\left(\mathrm{V}_{\mathrm{r}} / \mathrm{V}_{\mathrm{w}}\right)$ bird-seconds

Time taken for a bird to make transit through and completely clear the rotors $t=(d+l) / v$ where v is bird speed $(\mathrm{m} / \mathrm{sec})$

Calculate number of bird transits through
the rotors $=\mathrm{nx}\left(\mathrm{V}_{\mathrm{r}} / \mathrm{V}_{\mathrm{w}}\right) / \mathrm{t}$
15383.21 secs per yr
occupancy =
$t=$
transits $=$

Bird occupancy is based on observations of birds flying through rotor-swept area

Speed should be assessed in the field but published values are available

Number of bird transits through the rotors per annum $=$

CALCULATION OF COLLISION RISK FOR BIRD PASSING THROUGH ROTOR AREA

Input parameters regarding the turbine specification will need to be obtained from the design engineers or manufacturers.

Bird survey data

Assumptions (write in any assumptions that have been included in the model)
Assumption 1: The flying period extends from dawn to dusk and includes 25% of night
Assumption 2:
Assumption 3 :
Assumption 4:
Proportion of time during which a collision may occur $=$
Whimbrel flight time $=\quad 846$ seconds
Therefore in
5 months =
5383.21 seconds

9426307 (in each year)
518400 seconds survey time

Number of hours birds are potentially active during winter (from Band et al, in press)
Note: This table is only relevant when calculating collision risk for goose species. It provides an adjustment for nocturnal

		Jan	Feb		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nox	Dec
Mean Daylight hours**			6.8	9.08	11.78	14.62	17.23	18.77	18.05	15.68	12.88	10.05	7.45	5.98
Mean Nocturnal hrs*	5		0.86	0.746	0.611	0.469	0.3385	0.2615	0.2975	0.416	0.556	0.6975	0.8275	0.901
Combined Daily Mean			7.66	9.826	12.391	15.089	17.5685	19.0315	18.3475	16.096	13.436	10.7475	8.2775	6.881
No of days birds present			0	0	0	30	30	30	31	31	0	0	0	0
Total hours each month			0	0	0	452.67	527.055	570.945	568.7725	498.976	0	0	0	0

2618.4185
**Mean daylight hours taken from www.shetland.climatetemps.com/sunlight.php

Method 1 - Birds using the windfarm airspace (to be used for birds that fly across the site using a variety of different flight paths)
Number of bird transits through the rotors per annum = 23.44
Average collision risk for bird passing through rotor $=\quad 8.7 \%$
Number of birds potentially killed by rotors per annum = 2.05

NB: The above calculation assumes no avoidance
Correcting for 95% avoidance rate:
Number of birds potentially killed by rotors per annum $=$

Correcting for 99\% avoidance rate:
Number of birds potentially killed by rotors per annum $=$

Energy Isles Wind Farm

Bird Dimensions

Species

length (m)
wing span (m)
speed (m/sec)
Turbine Dimensions
Height of tower (m)
Blade length (m)
Max blade height (m)
Min blade height (m)
Depth of rotor (m)
Wind Farm Dimensions No of turbines

Site area (m2)
Turbine Specifications
K: [1D or [3D] (0 or 1)
NoBlades
MaxChord
Pitch (degrees)
Rotation period
Flight Characteristics
Flapping (0) or gliding (+1)
Survey Data
Total survey time (hours)
Period when Golden Plover

Golden Plover

0.28
0.28
0.72 17.9

123
23

19680000

= data input required
 = model calculates value

Sources of speed and dimension information: Bruderer \& Boldt (2001); BTO Bird Facts

Note, the maximum height of turbines $5,16,19,20,24,25,26,27$ and 28 is lower, at 180 m

The area is equal to the total visible area (at a minimum 30 m above ground level) from vantage points $1,2,3$ and 6 . The extent of this area is shown on Figure 6.1

Night adjustment
What percentage of the night is the target species active:
5 \%

Jan	Feb		Mar		Apr	May	Jun	Jul	Aug	Sep		Oct		Nov		Dec
0		0		0	30	31	30	31	31		0		0		0	0

Total number of months when Golden Plove
likely to be present:
5
Enter the date of each record, the time the bird(s) was recorded in the collision risk area and the number of birds on a separate Bird occupancy is automatically calculated.
Date Time observed (seconds)

$\mathbf{s})$	Number of birds	Bird Occupancy in
3	1	
30	1	4
45	1	3
30	1	$\mathbf{1 0}$
108	4	

Method 1 - Birds using the windfarm airspace

(to be used for birds that fly across the site using a variety of different flight paths)

```
= data input required
= model calculates value
```


Step 1

Go to Data Input

Input data about the species that is being assessed - body length, wing span and flight speed Input data on turbine dimensions
Input data on wind farm area
Input data on turbine dimensions and specification
Input all vantage point data for the species that is being assessed - number of birds and flight time within the study area Input the number of days for each month where the species is likely to be present within the site
Input days for those months where the species is likely to be present within the site
Input the appropriate night time correction factor for the species being assessed, e.g. a 25% nocturnal flight time correction was proposed by Band et al for geese. This correction cannot be applied to all species, for example raptors.

Step 2

Go to Collision Risk
Final collision risk estimates are highlighted
Only use the collision risk estimate for the method that has been used

Scottish Natural Heritage: Calculating a theoretical collision risk assuming no avoiding action

Site Name: Energy Isles Wind Farm	$=$ data input required
	$=$ model calculates value

Stage 1: Number of birds flying through rotors

Input Parameters

Bird Dimensions Species	Golden Plover	Bird Flight Data No of birds	4
length (m)	0.28	Time spent in V_{w} (sec)	1976.99
wing span (m)	0.72		
speed (m/sec)	17.9		
Turbine Dimensions		Wind Farm Dimen	
Height of tower (m)	123	No of turbines	23
Blade length (m)	77		
Max blade height (m)	200		
Min blade height (m)	46	Site Area (m2)	19680000
Depth of rotor (m)	3.651781		

Method 1 - Birds using the windfarm airspace

(to be used for birds that fly across the site using a variety of different flight paths)

Step No	Description of Calculation Identify 'flight risk volume' V_{w} ' which is the area of the wind farm multiplied by the height of the turbines		
2	Calculate the combined volume swept out by the rotors $V_{r}=N x R^{2} x(d+I)$ where N is the number of turbines, d is the depth of the	$\mathrm{V}_{\mathrm{w}}=$	Calculation
:---:			
$3936000000 \mathrm{~m}^{3}$			

Comments

Area is equivalent to the total area visible from VPs 1, 2, 3 and 6
rotor front to back, and I is the bird length

Estimate bird occupancy n within V_{w} This is the number of birds multiplied by the time spent within V_{w} (per season/year)

Bird occupancy of V_{r}
$\mathrm{n} \times\left(\mathrm{V}_{\mathrm{r}} / \mathrm{V}_{\mathrm{w}}\right)$ bird-seconds

Time taken for a bird to make transit through and completely clear the rotors $t=(d+l) / v$ where v is bird speed $(\mathrm{m} / \mathrm{sec})$

Calculate number of bird transits through the rotors $=\mathrm{nx}\left(\mathrm{V}_{\mathrm{r}} / \mathrm{V}_{\mathrm{w}}\right) / \mathrm{t}$
$\mathrm{n}=$
1976.99 secs per yr
occupancy $=$
$t=$
transits $=$
3.85 bird transits per annum

Bird occupancy is based on observations of birds flying through rotor-swept area

Speed should be assessed in the field but published values are available

CALCULATION OF COLLISION RISK FOR BIRD PASSING THROUGH ROTOR AREA

Input parameters regarding the turbine specification will need to be obtained from the design engineers or manufacturers.

Bird survey data

Date	Time observed (seconds)		Number of birds	Bird Occupancy in flight risk volume
TOTAL	108		4	108
TOTAL SURVEY TIME	144 hours	or	518400 seconds	

Period when Golden Plove likely to be on site (see below) =

Period when Golden Plove likely to be on site $=\quad 9489553$ seconds (in each year)
Assumptions (write in any assumptions that have been included in the model)
Assumption 1: The flying period extends from dawn to dusk and includes 25% of night.
Assumption 2:
Assumption 3
Assumption 4:

Proportion of time during which a collision may occur $=$
Golden Plover flight time = 108 seconds
in
Therefore in 5 months $=\quad 1976.99$ seconds
9489553 (in each year)
518400 seconds survey time
Note: This table is only relevant when calculating collision risk for goose species. It provides an adjustment for nocturnal
Number of hours birds are potentially active during winter (from Band et al, in press)

		Jan	Feb		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nox	Dec	
Mean Daylight hours**			6.8	9.08	11.78	14.62	17.23	18.77	18.05	15.68	12.88	10.05	7.45	5.98	
Mean Nocturnal hrs*	5		0.86	0.746	0.611	0.469	0.3385	0.2615	0.2975	0.416	0.556	0.6975	0.8275	0.901	
Combined Daily Mean			7.66	9.826	12.391	15.089	17.5685	19.0315	18.3475	16.096	13.436	10.7475	8.2775	6.881	
No of days birds present			0	0	0	30	31	30	31	31	0	0	0	0	
Total hours each month			0	0	0	452.67	544.6235	570.945	568.7725	498.976	0	0	0	0	2635.987

2635.987
**Mean daylight hours taken from www.shetland.climatetemps.com/sunlight.php

Method 1 - Birds using the windfarm airspace (to be used for birds that fly across the site using a variety of different flight paths)
Number of bird transits through the rotors per annum = 3.85
Average collision risk for bird passing through rotor $=\quad 6.4 \%$
Number of birds potentially killed by rotors per annum = 0.25

NB: The above calculation assumes no avoidance
Correcting for 95% avoidance rate:
Number of birds potentially killed by rotors per annum $=$

Correcting for 98% avoidance rate:
Number of birds potentially killed by rotors per annum =

Correcting for 99\% avoidance rate:
Number of birds potentially killed by rotors per annum $=$

Energy Isles Wind Farm

Bird Dimensions

Species

length (m)
wing span (m)
speed (m/sec)
Turbine Dimensions
Height of tower (m)
Blade length (m)
Max blade height (m)
Min blade height (m)
Depth of rotor (m)
Wind Farm Dimensions No of turbines

Site area (m2)
Turbine Specifications
K: [1D or [3D] (0 or 1)
NoBlades
MaxChord
Pitch (degrees)
Rotation period
Flight Characteristics
Flapping (0) or gliding (+1)
Survey Data
Total survey time (hours)
Period when Golden Plover

Golden Plover

0.28
0.28
0.72 17.9

123
23

19680000

= data input required
 = model calculates value

Sources of speed and dimension information: Bruderer \& Boldt (2001); BTO Bird Facts

Note, the maximum height of turbines $5,16,19,20,24,25,26,27$ and 28 is lower, at 180 m

The area is equal to the total visible area (at a minimum 30 m above ground level) from vantage points $1,2,3$ and 6 . The extent of this area is shown on Figure 6.1

Night adjustment
What percentage of the night is the target species active:
5 \%

Jan	Feb		Mar		Apr	May	Jun	Jul	Aug	Sep		Oct		Nov		Dec
0		0		0	30	31	30	31	31		0		0		0	0

Enter the date of each record, the time the bird(s) was recorded in the collision risk area and the number of birds on a separate Bird occupancy is automatically calculated.

Date	Time observed (seconds)	Number of birds	Bird Occupancy in flig
$04 / 04 / 2018$	48	1	48
$04 / 04 / 2018$	95	1	95
$10 / 04 / 2018$	140	1	140
$10 / 04 / 2018$	49	1	49
$10 / 04 / 2018$	332	1	332
$10 / 04 / 2018$	105	2	210
$15 / 05 / 2018$	35	1	35
$15 / 05 / 2018$	45	1	45
$16 / 05 / 2018$	25	2	50
$16 / 05 / 2018$	206	1	206
$16 / 05 / 2018$	130	1	130
$16 / 05 / 2018$	105	1	105
$16 / 05 / 2018$	15	1	15
$07 / 06 / 2018$	104	1	104
$07 / 06 / 2018$	117	1	117
$08 / 06 / 2018$	58	1	58
$06 / 07 / 2018$	165	2	330
$06 / 07 / 2018$	145	1	145
$02 / 08 / 2018$	135	41	5535
Total	2054	$\mathbf{6 2}$	$\mathbf{7 7 4 9}$

Method 1 - Birds using the windfarm airspace

(to be used for birds that fly across the site using a variety of different flight paths)

```
= data input required
= model calculates value
```


Step 1

Go to Data Input

Input data about the species that is being assessed - body length, wing span and flight speed Input data on turbine dimensions
Input data on wind farm area
Input data on turbine dimensions and specification
Input all vantage point data for the species that is being assessed - number of birds and flight time within the study area Input the number of days for each month where the species is likely to be present within the site
Input days for those months where the species is likely to be present within the site
Input the appropriate night time correction factor for the species being assessed, e.g. a 25% nocturnal flight time correction was proposed by Band et al for geese. This correction cannot be applied to all species, for example raptors.

Step 2

Go to Collision Risk
Final collision risk estimates are highlighted
Only use the collision risk estimate for the method that has been used

Scottish Natural Heritage: Calculating a theoretical collision risk assuming no avoiding action

Site Name: Energy Isles Wind Farm	$=$ data input required
	$=$ model calculates value

Stage 1: Number of birds flying through rotors

Input Parameters

Bird Dimensions Species	Golden Plover	Bird Flight Data No of birds	62
length (m)	0.28	Time spent in V_{w} (sec)	141849.05
wing span (m)	0.72		
speed (m/sec)	17.9		
Turbine Dimensions		Wind Farm Dimen	Ons
Height of tower (m)	123	No of turbines	23
Blade length (m)	77		
Max blade height (m)	200		
Min blade height (m)	46	Site Area (m2)	19680000
Depth of rotor (m)	3.651781		

Method 1 - Birds using the windfarm airspace

(to be used for birds that fly across the site using a variety of different flight paths)

Step No	Description of Calculation Identify 'flight risk volume' V_{w} ' which is the area of the wind farm multiplied by the height of the turbines		
2	Calculate the combined volume swept out by the rotors $V_{r}=N \times \pi R^{2} x(d+I)$ where N is the number of turbines, d is the depth of the		Calculation
:---:			
$3936000000 \mathrm{~m}^{3}$			

Comments

Area is equivalent to the total area visible from VPs 1, 2, 3 and 6
rotor front to back, and I is the bird length

Estimate bird occupancy n within V_{w} This is the number of birds multiplied by the time spent within V_{w} (per season/year)

Bird occupancy of V_{r}
$\mathrm{n} \times\left(\mathrm{V}_{\mathrm{r}} / \mathrm{V}_{\mathrm{w}}\right)$ bird-seconds

Time taken for a bird to make transit through and completely clear the rotors $t=(d+l) / v$ where v is bird speed $(\mathrm{m} / \mathrm{sec})$

Calculate number of bird transits through
the rotors $=\mathrm{nx}\left(\mathrm{V}_{\mathrm{r}} / \mathrm{V}_{\mathrm{w}}\right) / \mathrm{t}$
141849.05 secs per yr
occupancy $=$
$t=$
transits $=$
276.33 bird transits per annum

Bird occupancy is based on observations of birds flying through rotor-swept area

Speed should be assessed in the field but published values are available

CALCULATION OF COLLISION RISK FOR BIRD PASSING THROUGH ROTOR AREA

Input parameters regarding the turbine specification will need to be obtained from the design engineers or manufacturers.

Bird survey data

Date	Time observed (seconds)		Number of birds	Bird Occupancy in flight risk volume
TOTAL	2054		7749	
TOTAL SURVEY TIME	144 hours	or	518400 seconds	

Period when Golden Plove likely to be on site (see below) =

Period when Golden Plove likely to be on site $=\quad 9489553$ seconds (in each year)
Assumptions (write in any assumptions that have been included in the model)
Assumption 1: The flying period extends from dawn to dusk and includes 25% of night.
Assumption 2:
Assumption 3
Assumption 4:
Proportion of time during which a collision may occur $=$
Golden Plover flight time = 7749 seconds
in
Therefore in 5 months $=\quad 141849.05$ seconds

9489553 (in each year)
518400 seconds survey time

Number of hours birds are potentially active during winter (from Band et al, in press)
Note: This table is only relevant when calculating collision risk

		Jan	Feb		Mar	Apr	May	Jun	Jul Aug		Sep	Oct	Nox Dec	
Mean Daylight hours**			6.8	9.08	11.78	14.62	17.23	18.77	18.05	15.68	12.88	10.05	7.45	5.98
Mean Nocturnal hrs*	5		0.86	0.746	0.611	0.469	0.3385	0.2615	0.2975	0.416	0.556	0.6975	0.8275	0.901
Combined Daily Mean			7.66	9.826	12.391	15.089	17.5685	19.0315	18.3475	16.096	13.436	10.7475	8.2775	6.881
No of days birds present			0	0	0	30	31	30	31	31	0	0	0	0
Total hours each month			0	0	0	452.67	544.6235	570.945	568.7725	498.976	0	0	0	0

Total hours each month
2635.987
**Mean daylight hours taken from www.shetland.climatetemps.com/sunlight.php

Method 1 - Birds using the windfarm airspace (to be used for birds that fly across the site using a variety of different flight paths)
Number of bird transits through the rotors per annum $=$
Average collision risk for bird passing through rotor $=$
Number of birds potentially killed by rotors per annum = 17.60

NB: The above calculation assumes no avoidance
Correcting for 95% avoidance rate:
Number of birds potentially killed by rotors per annum $=$
Correcting for 98% avoidance rate:
Number of birds potentially killed by rotors per annum =

Correcting for 99\% avoidance rate:
Number of birds potentially killed by rotors per annum =

References

Band, W, Madders, M, \& Whitfield, D.P. (2007) Developing field and analytical methods to assess avian collision risk at wind farms. In: Janss, G, de Lucas, M \& Ferrer, M (eds.) Birds and Wind Farms. Quercus, Madrid. 259-275 Baker, J.K. (2016) Identification of European Non-Passerines. British Trust for Ornithology

Bruderer, B. \& Boldt, A. (2001) Flight characteristics of birds: I. radar measurements of speeds. Ibis.143. Pp. 178204

Scottish Natural Heritage (2000) Windfarms and Birds - Calculating a theoretical collision risk assuming no avoiding action. SNH Guidance Note.

Scottish Natural Heritage (2018) Avoidance Rates for the onshore SNH Wind Farm Collision Risk Model. SNH Guidance Note.

[^0]: ${ }^{1}$ Taken from www.shetland.climatetemps.com/sunlight.php

[^1]: ${ }^{2}$ Beaufort scale
 ${ }^{3}$ Estimation of cloud cover given in Oktas
 ${ }^{4}$ Rain: None = 0; Occasional=1; Drizzle / mist = 2; Light shower = 3; Heavy shower = 4; Heavy rain = 5
 ${ }^{5}$ Snow: None $=0$; On Site $=1$; Snowing $=2$
 ${ }^{6}$ Frost: None = 0; Ground =1; All day = 2

