# 16 Carbon Calculator

# Contents

| 16.1 | Executive Summary                  | 16-1  |
|------|------------------------------------|-------|
| 16.2 | Introduction                       | 16-1  |
| 16.3 | Response to Consultation Responses | 16-1  |
| 16.4 | Changes to input parameters        | 16-2  |
| 16.5 | Assessment of Residual Effects     | 16-14 |
| 16.6 | Assessment of Cumulative Effects   | 16-21 |
| 16.7 | Comparison of Effects              | 16-21 |
| 16.8 | References                         | 16-22 |

This page is intentionally blank.

# 16 Carbon Calculator

# 16.1 Executive Summary

- 16.1.1 This chapter considers the Carbon Balance Assessment of the Proposed Development and provides an update based on the 2021 Layout, compared to the 2020 Layout.
- 16.1.2 The results of the Carbon Calculator for the 2021 Layout show that the Proposed Development is estimated to produce annual carbon savings in the region of 143,000 tonnes of CO<sub>2</sub>e, and lifetime savings of nearly 4.3 Mt of CO<sub>2</sub>e through the displacement of grid electricity. This is in comparison to the annual carbon savings in the region of 180,000 tonnes of CO<sub>2</sub>e, and lifetime savings of nearly 5.4 Mt of CO<sub>2</sub>e, predicted for the 2020 Layout. Both layouts used were based on a counterfactual emission factor of 0.254 kgCO<sub>2</sub>e/kWh, which represents displacing grid electricity at the current average annual grid mix. The lower savings of the 2021 Layout are a function of the reduced number of turbines and therefore generating capacity.
- 16.1.3 The assessment of the carbon losses and gains from the 2021 Layout has estimated overall losses of around 244,000 tonnes of CO<sub>2</sub>e, mainly due to embodied losses from the manufacture of the turbines and provision of backup power to the grid, in comparison to the 334,000 tonnes of CO<sub>2</sub>e predicted for the 2020 Layout. Ecological carbon losses account for 24 % of the total emissions resulting from the 2021 Layout construction and operation, compared to 28 % predicted for the 2020 Layout, indicating that the 2021 Layout has a lower impact on stored carbon on the site.
- 16.1.4 The estimated payback time of the 2021 Layout, using the Scottish Government Carbon Calculator, is estimated at 1.7 years, with a minimum/maximum range of 1.4 to 2.1 years, compared against the estimated 1.9 years payback time for the 2020 Layout. The carbon intensity of the electricity produced by the Proposed Development is estimated at 0.014 kgCO<sub>2</sub>e/kWh. This is below the outcome indicator for the electricity grid intensity of 0.05 kgCO<sub>2</sub>e/kWh set by the Scottish Government in the Climate Change Plan (2018-2032) and therefore the Proposed Development is evaluated to have an overall beneficial effect on climate change mitigation.

## 16.2 Introduction

- 16.2.1 This chapter has been undertaken by Fluid Environmental Consulting (Fluid) and considers the Carbon Balance Assessment of the Proposed Development and provides an update to that undertaken as part of the 2020 Supplementary Environmental Information (SEI).
- 16.2.2 This chapter of the SEI 2 should be read in conjunction with Chapter 16 of the 2019 EIA Report which provides a background to the Carbon Balance Assessment, the legislation behind it and the methodology used and Chapter 16 of the 2020 SEI. This chapter assesses the effects of the 2021 Layout on the whole life carbon balance of the Proposed Development. With the removal of five turbines, reduction in number of borrow pit search areas from seven to four and other associated infrastructure changes from the 2020 Layout, the input parameters for the assessment have changed and the Carbon Calculator assessment has been updated.
- 16.2.3 The assessment has been carried out using the Scottish Government's Carbon Calculator (online version 1.6.1); the 2021 Layout has the online reference J027-YRZP-WP6J.

### 16.3 Response to Consultation Responses

### SEPA

16.3.1 SEPA stated (letter dated 24/May/2021) that "With respect to these issues, assessment of the proposals will focus on avoidance and minimisation of the loss of carbon during construction and operation of the wind farm, and the balance between the residual unavoidable carbon losses and carbon gains which have a high likelihood of being achieved through proposed compensatory

restoration......It is welcome that the applicant will re-run the carbon calculator. In addition to payback period, the applicant should present the carbon calculator estimates of losses from soil organic matter (or drained peat), losses due to Dissolved organic carbon (DOC) and Particulate organic carbon (POC) leaching and losses due to reduced carbon fixing potential of the peatland vegetation. An estimate of carbon gains arising from proposed offsite peatland restoration works would be helpful to understand the degree of compensation that will be delivered – if an estimate using the carbon calculator can be obtained then that would be useful additional information."

16.3.2 The Applicant can confirm that the Carbon Calculator has been re-run with updated parameters from the 2021 Layout which are detailed below in Table 16.1. Further detail from the Carbon Calculator about the breakdown of carbon losses from site has been presented in Table 16.2 and 16.3. Due to the restoration occurring off-site, it was excluded from previous iterations; however, it has been included in the Carbon Calculator for the 2021 Layout following SEPA's consultation response. The estimate of these off-site restoration gains is presented in Table 16.4.

### 16.4 Changes to Input Parameters

16.4.1 Table 16.1 below details only the input parameters that have changed due to the 2021 Layout, along with the data range, the source, and the assumptions, and highlights how these have changed from the 2020 SEI.

|                          |                           | 2020 Layou | t       |          | 2021 Layout | :       |                                                                                                                                                                                                                                                                                                                                                                 |                 |  |  |  |  |
|--------------------------|---------------------------|------------|---------|----------|-------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|--|
| Parameter                | Expected                  | Minimum    | Maximum | Expected | Minimum     | Maximum | Data Source                                                                                                                                                                                                                                                                                                                                                     | Key Assumptions |  |  |  |  |
| Wind Farm Charact        | Wind Farm Characteristics |            |         |          |             |         |                                                                                                                                                                                                                                                                                                                                                                 |                 |  |  |  |  |
| Dimensions               |                           |            |         |          |             |         |                                                                                                                                                                                                                                                                                                                                                                 |                 |  |  |  |  |
| No. of turbines          | 23                        | 23         | 23      | 18       | 18          | 18      | Chapter 3 (SEI 2) states that the Proposed<br>Development comprises of 18 turbines.                                                                                                                                                                                                                                                                             | None            |  |  |  |  |
| Performance              |                           |            |         |          |             |         |                                                                                                                                                                                                                                                                                                                                                                 |                 |  |  |  |  |
| Turbine capacity<br>(MW) | 6.9                       | 6.9        | 6.9     | 7.0      | 7.0         | 7.0     | Chapter 3 (SEI 2) states that the overall<br>capacity of the Proposed Development will be<br>(subject to turbine procurement)<br>approximately 126 MW, but would not<br>exceed 200 MW.<br>For the purposes of the carbon calculator, a 7<br>MW turbine based on a 126 MW capacity has<br>been used, which is consistent with the socio-<br>economic assessment. | None            |  |  |  |  |
| Borrow Pits              |                           |            |         |          |             |         |                                                                                                                                                                                                                                                                                                                                                                 |                 |  |  |  |  |
| Number of<br>borrow pits | 7                         | 7          | 7       | 4        | 4           | 4       | Chapter 3 (SEI 2) states there will be four<br>borrow pit search areas. All of these have<br>been included in the assessment.                                                                                                                                                                                                                                   | None            |  |  |  |  |

#### Table 16.1 – Updated parameters for the Scottish Government Carbon Calculator

|                                                  |          | 2020 Layou | t       |          | 2021 Layout | :       |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------|----------|------------|---------|----------|-------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter                                        | Expected | Minimum    | Maximum | Expected | Minimum     | Maximum | Data Source                                                                                                                                                                                                                                                                                                                                                                                | Key Assumptions                                                                                                                                                                                                                                                                                                                                                            |
| Average length of pits (m)                       | 147      | 140        | 154     | 141      | 134         | 148     | The four borrow pits are of different sizes and<br>shapes; in order to be able to enter an                                                                                                                                                                                                                                                                                                 | A range of +5 % has<br>been used to calculate                                                                                                                                                                                                                                                                                                                              |
| Average width of pits (m)                        | 147      | 140        | 154     | 141      | 134         | 148     | area of the borrow pits was calculated from<br>the GIS shapefile. This area was divided by<br>the number of borrow pits and then the<br>square root of this value was calculated to get<br>an average length and width.                                                                                                                                                                    | maximum values of both length and width.                                                                                                                                                                                                                                                                                                                                   |
| Average depth of<br>peat removed<br>from pit (m) | 1.22     | 1.17       | 1.27    | 1.00     | 0.95        | 1.05    | The volume of peat in each borrow pit was<br>calculated from the area of each borrow pit<br>multiplied by the average peat depth for that<br>location (averaged from all of the peat probes<br>within a 50 m buffer of the infrastructure).<br>The total volume of peat was divided by the<br>total borrow pit area to provide an average<br>overall peat depth across all four locations. | A 95 % confidence<br>interval (CI) has been<br>calculated as mean +/-<br>2 standard error (SE) to<br>estimate the likely<br>minimum and<br>maximum values of<br>peat volume for each<br>borrow pit. The total<br>maximum and<br>minimum volumes<br>were divided by the<br>total area to get an<br>estimate of the range<br>of the maximum and<br>minimum average<br>depth. |

|                                                                                           |                      | 2020 Layou     | t             | 2021 Layout |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                            |
|-------------------------------------------------------------------------------------------|----------------------|----------------|---------------|-------------|----------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Parameter                                                                                 | Expected             | Minimum        | Maximum       | Expected    | Minimum        | Maximum      | Data Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Key Assumptions                                                                            |
| Foundations and ha                                                                        | ard-standing         | ; area associa | ated with eac | h turbine   |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                            |
| Method used to<br>calculate CO <sub>2</sub> loss<br>from foundations<br>and hard-standing | Simple me<br>average | thod – whole   | e site        | Simple met  | thod – whole s | site average | The Carbon Calculator provides two options<br>for calculating losses from turbine<br>foundations and hardstanding; where there<br>are obvious groups of turbines in terms of<br>different peat depths, structures or use of<br>piling, these can be separated into different<br>construction areas. Alternatively, there is a<br>simple method that uses just rectangular<br>shapes. For this site, the simple method has<br>been used because there is no obvious<br>grouping of turbines in terms of peat depths. | None                                                                                       |
| Average length of<br>turbine<br>foundations (m)                                           | 21                   | 20             | 22            | 13.3        | 12.6           | 13.9         | Chapter 3 (SEI 2) states that the turbine<br>foundations have been refined and the<br>dimensions reduced to 15m diameter. Since                                                                                                                                                                                                                                                                                                                                                                                     | A range of + 5% has<br>been used to calculate<br>the likely expected and                   |
| Average width of<br>turbine<br>foundations (m)                                            | 21                   | 20             | 22            | 13.3        | 12.6           | 13.9         | for length and width, the square root of the<br>area of the foundations was calculated to get<br>an average length and width.                                                                                                                                                                                                                                                                                                                                                                                       | maximum values of both length and width.                                                   |
| Average depth of<br>peat removed<br>from turbine<br>foundations (m)                       | 1.47                 | 1.39           | 1.55          | 1.53        | 1.43           | 1.63         | The volume of peat at each turbine location<br>was calculated from the turbine area<br>multiplied by the average peat depth for each<br>location (averaged from all the peat probes                                                                                                                                                                                                                                                                                                                                 | A 95 % CI has been<br>calculated as mean +/-<br>2 SE to estimate the<br>likely minimum and |

|                                                                |          | 2020 Layou | t       |          | 2021 Layout | :       |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                         |
|----------------------------------------------------------------|----------|------------|---------|----------|-------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter                                                      | Expected | Minimum    | Maximum | Expected | Minimum     | Maximum | Data Source                                                                                                                                                                                                                                                                                                                                                                                                     | Key Assumptions                                                                                                                                                                                                                         |
|                                                                |          |            |         |          |             |         | within a 50 m buffer of each<br>turbine/hardstanding location). The total<br>volume of peat was divided by the total<br>foundation area to provide an average peat<br>depth across all 18 turbine locations.                                                                                                                                                                                                    | maximum values of<br>peat volume for each<br>turbine foundation.<br>The total maximum<br>and minimum volumes<br>were divided by the<br>total area to get an<br>estimate of the range<br>of the maximum and<br>minimum average<br>depth. |
| Average length of hard-standing (m)                            | 57       | 54         | 60      | 60       | 57          | 63      | Chapter 3 (SEI 2) states that permanent<br>hardstanding areas would measure<br>approximately 30 m wide by 60 m long                                                                                                                                                                                                                                                                                             | A range of +5 % has<br>been used to calculate<br>the likely expected and                                                                                                                                                                |
| Average width of hard-standing (m)                             | 57       | 54         | 60      | 30       | 28.5        | 31.5    |                                                                                                                                                                                                                                                                                                                                                                                                                 | maximum values of both length and width.                                                                                                                                                                                                |
| Average depth of<br>peat removed<br>from hard-<br>standing (m) | 1.47     | 1.39       | 1.55    | 1.53     | 1.43        | 1.63    | The volume of peat at each hardstanding<br>location was calculated from the<br>hardstanding area multiplied by the average<br>peat depth for each location (averaged from<br>all the peat probes within a 50 m buffer of<br>each turbine/hardstanding location). The<br>total volume of peat was divided by the total<br>hardstanding area to provide an average peat<br>depth across all 18 turbine locations. | A 95 % CI has been<br>calculated as mean +/-<br>2 SE to estimate the<br>likely minimum and<br>maximum values of<br>peat volume for each<br>hardstanding. The total<br>maximum and<br>minimum volumes<br>were divided by the             |

CARBON CALCULATOR

|                                                                       |          | 2020 Layou | t       |          | 2021 Layout |         |                                                                                                                                                                                                                                                                                                             |                                                                                                  |
|-----------------------------------------------------------------------|----------|------------|---------|----------|-------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Parameter                                                             | Expected | Minimum    | Maximum | Expected | Minimum     | Maximum | Data Source                                                                                                                                                                                                                                                                                                 | Key Assumptions                                                                                  |
|                                                                       |          |            |         |          |             |         |                                                                                                                                                                                                                                                                                                             | total area to get an<br>estimate of the range<br>of the maximum and<br>minimum average<br>depth. |
| Volume of<br>concrete                                                 |          |            |         |          |             |         |                                                                                                                                                                                                                                                                                                             |                                                                                                  |
| Volume of<br>concrete used<br>(m <sup>3</sup> ) in the entire<br>area | 41,599   | 39,519     | 43,679  | 12,717   | 12,081      | 13,353  | Chapter 3 (SEI 2) states that the turbine<br>foundations are 15 m diameter and between<br>3 to 5 m in depth. The average of these<br>dimensions has been used to calculate an<br>estimated volume of concrete per<br>foundation. The total volume is estimated by<br>multiplying by the number of turbines. | A range of +/- 5 % has<br>been used to calculate<br>the likely minimum and<br>maximum.           |
| Access tracks                                                         |          |            |         |          |             |         |                                                                                                                                                                                                                                                                                                             |                                                                                                  |
| Total length of<br>access track (m)                                   | 15,290   | 14,526     | 16,055  | 11,390   | 10,821      | 11,960  | Chapter 3 (SEI 2) provides track lengths for all<br>the categories below:<br>New permanent floated access track<br>New permanent dug access track<br>New temporary floated access track<br>Upgraded existing track.                                                                                         | A range of +/- 5 % has<br>been used to calculate<br>the likely minimum and<br>maximum.           |

|                                                        |          | 2020 Layou | t       |          | 2021 Layout | :       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                       |
|--------------------------------------------------------|----------|------------|---------|----------|-------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter                                              | Expected | Minimum    | Maximum | Expected | Minimum     | Maximum | Data Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Key Assumptions                                                                                                                                                       |
| Existing track<br>length (m)                           | 1,040    | 988        | 1,092   | 0        | 0           | 0       | It is assumed that all existing track will<br>require upgrading and therefore it has been<br>included in the category above.                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                       |
| Length of access<br>track that is<br>floating road (m) | 13,200   | 12,540     | 13,860  | 8,560    | 8,132       | 8,988   | Chapter 3 (SEI 2) provides track length for<br>permanent floating track and temporary<br>floating track that will be restored post-<br>construction.                                                                                                                                                                                                                                                                                                                                                                | A range of +/- 5 % has<br>been used to calculate<br>the likely minimum and<br>maximum                                                                                 |
| Floating road<br>width (m)                             | 6.0      | 5.7        | 6.3     | 6.9      | 6.5         | 7.2     | The average width has been calculated from<br>the area of floating track in the shapefile,<br>divided by the length provided in Chapter 3<br>(SEI 2). This gives an average width value of<br>6.9m, which includes all the widening at<br>junctions and bends.                                                                                                                                                                                                                                                      | A range of +/-5 % has<br>been used to calculate<br>the likely maximum<br>and maximum.                                                                                 |
| Floating road<br>depth (m)                             | 0        | 0          | 0.38    | 0        | 0           | 0.39    | This parameter accounts for sinking of<br>floating road. The Carbon Calculator states<br>that it should be entered as the average<br>depth of the road expected over the lifetime<br>of the Proposed Development. If no sinking is<br>expected, enter as zero. It is not anticipated<br>that sinking of the floating track would be<br>minimal and therefore this parameter has<br>been set as zero for the expected and<br>minimum values. A cautious estimate of 25 %<br>of the average peat depth under floating | Zero value for expected<br>and minimum values.<br>The maximum is<br>estimated at 25 % of<br>the average peat depth<br>for all the floating road<br>locations on-site. |

|                                                            |          | 2020 Layou | t       |          | 2021 Layout |         |                                                                                                                                                                                                                               |                                                                                                               |
|------------------------------------------------------------|----------|------------|---------|----------|-------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Parameter                                                  | Expected | Minimum    | Maximum | Expected | Minimum     | Maximum | Data Source                                                                                                                                                                                                                   | Key Assumptions                                                                                               |
|                                                            |          |            |         |          |             |         | roads (1.57m) has been entered for the maximum to represent the worst case scenario.                                                                                                                                          |                                                                                                               |
| Length of floating<br>road that is<br>drained (m)          | 13,200   | 12,540     | 13,860  | 8,560    | 8,132       | 8,988   | SEI 2 Appendix 10.1 Revised Peat<br>Management and Restoration Plan states that<br>floated track includes V drains. Therefore, it is<br>assumed that the full length of floating road<br>access track will be drained.        | A range of +/- 5 % has<br>been used to calculate<br>the likely minimum and<br>maximum.                        |
| Length of access<br>track that is<br>excavated road<br>(m) | 1,050    | 998        | 1,103   | 2,830    | 2,689       | 2,972   | Chapter 3 (SEI 2) provides track length for<br>permanent dug access track and upgraded<br>existing track, which has been included here.                                                                                       | A range of +/- 5 % has<br>been used to calculate<br>the likely minimum and<br>maximum                         |
| Excavated road<br>width (m)                                | 6.0      | 5.7        | 6.3     | 8.8      | 8.0         | 9.2     | The average width has been calculated from<br>the area of excavated track in the shapefile,<br>divided by the length. This gives a higher<br>average width value of 8.8m but this include<br>widening at junctions and bends. | A range of +/- 5 % has<br>been used to calculate<br>the likely minimum and<br>maximum.                        |
| Average depth of<br>peat excavated<br>for road (m)         | 1.38     | 1.31       | 1.45    | 1.52     | 1.49        | 1.55    | The average peat depth under excavated<br>track has been calculated using the peat<br>probe data within the track shape and within<br>a 25 m buffer each side.<br>Count = 1255                                                | A 95 % CI has been<br>calculated as mean +/-<br>2 SE to estimate the<br>likely minimum and<br>maximum values. |

|                                                                                      |             | 2020 Layou  | t         |          | 2021 Layout | ;       |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------|-------------|-------------|-----------|----------|-------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter                                                                            | Expected    | Minimum     | Maximum   | Expected | Minimum     | Maximum | Data Source                                                                                                                                                                                                                                                                                                                                                        | Key Assumptions                                                                                                                                                                                                      |
|                                                                                      |             |             |           |          |             |         | Mean = 1.52 m                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                      |
|                                                                                      |             |             |           |          |             |         | SE = 0.0016 m                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                      |
| Additional peat exc                                                                  | avated (not | accounted f | or above) |          |             |         |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                      |
| Volume of<br>additional peat<br>excavated (m <sup>3</sup> )                          | 9,070       | 8,603       | 9,357     | 9,693    | 9,209       | 10,178  | The volume of additional peat excavated has<br>been calculated from compound 1 and the<br>widened section of access track at the<br>entrance.<br>The area of these components was estimated<br>from the GIS shape file. The average peat<br>depth at the location (area of component +<br>50 m buffer) was calculated from GIS, with<br>the standard deviation.    | The variation of this<br>component was<br>calculated as a<br>minimum and<br>maximum volume<br>using the 95 % CI<br>calculated as mean +/-<br>2 SE to estimate the<br>peat depth and +/- 5 %<br>to estimate the area. |
| Additional area of<br>land lost due to<br>windfarm<br>construction (m <sup>2</sup> ) | 65,214      | 61,953      | 68,475    | 80.595   | 76,565      | 84,625  | The additional area of land lost to<br>construction includes the excavated<br>infrastructure components above and also<br>the infrastructure that will be floated. This<br>includes:<br>2 compounds, including the substation<br>Temporary laydown areas, temporary boom<br>assembly area, temporary assistant crane<br>hardstanding – restored after construction | A range of +/- 5 % has<br>been used to calculate<br>the likely minimum and<br>maximum                                                                                                                                |

|                                                                                        |          | 2020 Layou | t       |          | 2021 Layout | :       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |  |  |  |
|----------------------------------------------------------------------------------------|----------|------------|---------|----------|-------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|--|
| Parameter                                                                              | Expected | Minimum    | Maximum | Expected | Minimum     | Maximum | Data Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Key Assumptions                                                                                        |  |  |  |
|                                                                                        |          |            |         |          |             |         | The area of each component was estimated from the GIS shape file.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |  |  |  |
| Improvement of C sequestration at site by blocking drains, restoration of habitat etc. |          |            |         |          |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |  |  |  |
| Improvement of<br>degraded bog                                                         |          |            |         |          |             |         | In previous versions of the carbon calculator<br>for the Proposed Development, this section<br>was not included because the habitat<br>restoration was outside the site boundary<br>and limited information was available.<br>However, as detailed in Section 16.3, SEPA<br>have requested an estimate of carbon gains<br>arising from proposed offsite peatland<br>restoration works and therefore it has been<br>included in this iteration. The wide range of<br>parameters reflects the ongoing discussions<br>regarding pre and post restoration habitat. |                                                                                                        |  |  |  |
| Area of degraded<br>bog to be<br>improved (ha)                                         |          |            |         | 53       | 51          | 55      | There are two candidate areas, both<br>comprising degraded peatland with hags and<br>other areas of bare peat. The main issue is<br>overgrazing; neither has been systematically<br>drained.<br>Area A is a minimum of 124.3 ha; the<br>estimated 'net restoration benefit' will be 55<br>ha.                                                                                                                                                                                                                                                                  | The median value of<br>the two net restoration<br>areas has been<br>selected as the<br>expected value. |  |  |  |

|                                                                                                                         |          | 2020 Layou | t       |          | 2021 Layout | :       |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------|----------|------------|---------|----------|-------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter                                                                                                               | Expected | Minimum    | Maximum | Expected | Minimum     | Maximum | Data Source                                                                                                                                                                                                                                                                                              | Key Assumptions                                                                                                                                                 |
|                                                                                                                         |          |            |         |          |             |         | Area B is minimum of 75.5 ha; the estimated<br>'net restoration benefit' will be 51 ha.                                                                                                                                                                                                                  |                                                                                                                                                                 |
| Water table depth<br>in degraded bog<br>before<br>improvement (m)                                                       |          |            |         | 0.19     | 0.08        | 0.3     | Although neither area has been<br>systematically drained, in degraded peat it is<br>expected that the water table will be sub-<br>optimal for peat development. A value of<br>0.3m has been selected for the maximum,<br>with the minimum set as the same as the<br>average expected value on this site. | The median value of<br>the minimum and<br>maximum has been<br>selected as the<br>expected value.                                                                |
| Water table depth<br>in degraded bog<br>after<br>improvement (m)                                                        |          |            |         | 0.08     | 0.00        | 0.16    | To restore the bog habitat in the borrow pits,<br>it is expected that the average annual water<br>table depth needs to be restored to around<br>0.1 m from the surface. The average annual<br>water table depth is set as the site average as<br>measured from the cores.                                | The minimum value<br>has been set at zero,<br>and the maximum<br>value 0.16 m which<br>represents the average<br>depth of the<br>acrotelm/catotelm<br>boundary. |
| Time required for<br>hydrology and<br>habitat of bog to<br>return to its<br>previous state on<br>improvement<br>(years) |          |            |         | 15       | 10          | 20      | Due to the larger restoration area and<br>potentially more complex restoration<br>activities, it is anticipated that the hydrology<br>and habitat would take longer to restore than<br>the borrow pits and therefore the time has<br>been set at 50% longer.                                             | A range of +/- 33 % has<br>been used to calculate<br>the likely minimum and<br>maximum                                                                          |

|                                                                                                                     |            | 2020 Layout | t       |          | 2021 Layout |         |                                                                                                                                                                                                                                                                                                                                            |                                                                                        |
|---------------------------------------------------------------------------------------------------------------------|------------|-------------|---------|----------|-------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Parameter                                                                                                           | Expected   | Minimum     | Maximum | Expected | Minimum     | Maximum | Data Source                                                                                                                                                                                                                                                                                                                                | Key Assumptions                                                                        |
| Period of time<br>when<br>effectiveness of<br>the improvement<br>in degraded bog<br>can be<br>guaranteed<br>(years) |            |             |         | 30       | 30          | 30      | The Carbon Calculator states that if the time<br>required for hydrology and habitat to return<br>to its previous state is 15 years and the<br>restoration can be guaranteed over the<br>lifetime of the Proposed Development (30<br>years), the period of time when the<br>improvement can be guaranteed should be<br>entered as 30 years. |                                                                                        |
| Restoration of peat                                                                                                 | removed fr | om borrow p | oits    |          |             |         |                                                                                                                                                                                                                                                                                                                                            |                                                                                        |
| Area of borrow<br>pits to be restored<br>(ha)                                                                       | 15.1       | 13.7        | 16.7    | 8.0      | 7.6         | 8.4     | The four borrow pit areas are of different<br>sizes and shapes; the total area of the borrow<br>pits was calculated from the GIS shapefile.                                                                                                                                                                                                | A range of +/- 5 % has<br>been used to calculate<br>the likely minimum and<br>maximum. |
| Depth of water<br>table in borrow<br>pit before<br>restoration with<br>respect to the<br>restored surface<br>(m)    | 1.22       | 1.17        | 1.27    | 1.00     | 0.95        | 1.05    | This is a difficult parameter to estimate;<br>however, it is assumed that the water table<br>would be significantly lowered by drainage<br>prior to restoration. It is estimated that the<br>water table would be at middle of the peat<br>column before restoration with respect to the<br>restored surface, therefore at 1m depth.       | A range of +/– 5 % has<br>been used to calculate<br>the likely minimum and<br>maximum. |

# 16.5 Assessment of Residual Effects

#### Carbon Balance Assessment – Emissions

16.5.1 The results from the Carbon Balance Assessment are presented below with comparison against the results from the 2020 Layout. The results are divided into losses from activities resulting in the emission of carbon, gains from site restoration activities that should result in uptake of atmospheric carbon, comparison with the baseline stored carbon and savings from the avoidance of carbon emissions by displacing grid electricity from other fuel sources.

#### Table 16.1 - Estimated Carbon Emissions During the Construction Phase

|                                           |          | 202           | 20 Layout |                           | 2021 Layout |              |         |                        |
|-------------------------------------------|----------|---------------|-----------|---------------------------|-------------|--------------|---------|------------------------|
| Emission source                           | Estima   | ted emissions | (tCO2e)   | % of overall<br>emissions | Estir       | % of overall |         |                        |
|                                           | Expected | Minimum       | Maximum   | (expected<br>scenario)    | Expected    | Minimum      | Maximum | (expected<br>scenario) |
| Losses due to turbine life                | 150,673  | 150,016       | 151,330   | 44 %                      | 113,331     | 113,130      | 113,532 | 45.6 %                 |
| CO <sub>2</sub> loss from excavated peat  | 51,717   | 29,580        | 80,621    | 15%                       | 24,119      | 12,832       | 39,351  | 9.7 %                  |
| Subtotal of emissions during construction | 202,390  | 179,596       | 231,951   | 59%                       | 137,450     | 125,962      | 152,883 | 55.3 %                 |

16.5.2 Table 16.2 shows that for the 2021 Layout, the losses during construction have decreased but this is mainly in line with the reduced number of turbines. However, the percentage of construction phase losses that are attributable to excavated peat have reduced from 15% to 9.7% which indicates that the 2021 Layout has reduced the amount of affected peat in comparison with the 2020 Layout.

#### Table 16.2 - Estimated Carbon Emissions During the Operational Phase

|                                                                                                   | 2020 Layout                              |         |         |                        | 2021 Layout |              |         |                        |  |
|---------------------------------------------------------------------------------------------------|------------------------------------------|---------|---------|------------------------|-------------|--------------|---------|------------------------|--|
| Emission source                                                                                   | Estimated emissions (tCO <sub>2</sub> e) |         |         | % of overall           | Estima      | % of overall |         |                        |  |
|                                                                                                   | Expected                                 | Minimum | Maximum | (expected<br>scenario) | Expected    | Minimum      | Maximum | (expected<br>scenario) |  |
| Losses due to backup                                                                              | 93,839                                   | 93,839  | 93,839  | 28%                    | 74,504      | 74,504       | 74,504  | 30 %                   |  |
| Losses due to reduced carbon fixing potential                                                     | 6,848                                    | 2,212   | 16,116  | 2%                     | 5,056       | 1,629        | 11,894  | 2%                     |  |
| Losses due to dissolved<br>organic carbon (DOC) &<br>particulate organic carbon<br>(POC) leaching | 14,042                                   | 1,534   | 44,847  | 4%                     | 11,559      | 1,338        | 36,048  | 5%                     |  |
| CO <sub>2</sub> loss from drained peat                                                            | 23,131                                   | 2,896   | 10,718  | 7%                     | 20,205      | 6,859        | 9,675   | 8%                     |  |
| Subtotal of emissions during operation                                                            | 137,860                                  | 100,481 | 165,520 | 41%                    | 111,324     | 84,330       | 132,121 | 45%                    |  |

16.5.3 Table 16.3 shows that the distribution of emissions during the operational phase has not changed significantly. The most significant operational source of emissions is still the requirement for back-up power in the grid, which is assumed to come from a fossil fuel source. Carbon losses due to leaching of carbon and from oxidation of drained peat account for a further 13 %, however, loss of carbon fixing potential from bogs still only contributes 2 % of the total losses.

- 16.5.4 Graph 16.1 shows how the emissions are split between sources for both the 2020 Layout and the 2021 Layout. The majority of emissions result from activities largely outside of the control of the Applicant (shown in blue); lifecycle emissions from the turbines can be potentially reduced through consideration at the procurement phase but availability and delivery timescales of appropriate turbines are usually more important factors in selection. The second largest emission source is from back-up power, and this depends on both the grid mix and future grid management policies and is not under the control of the Applicant.
- 16.5.5 Emissions under the control of the Applicant are shown in green. These include the losses of carbon due to the extraction and drainage of peat and loss of carbon fixing potential. The percentage of emissions under the control of the Applicant have reduced slightly from 28 % to 24 %.



Graph 16-1 - Breakdown of Emission Sources for the Proposed Development (2020 Layout compared to 2021 Layout) Expected losses in tCO<sub>2</sub>e

#### Carbon Balance Assessment – Gains

16.5.6 Table 16.4 shows the estimated carbon gains over the lifetime of the Proposed Development from improvements through restoration, with a comparison between the 2020 Layout and 2021 Layout. This shows the gains resulting from the improvement of degraded bog through off-site habitat restoration; these are

only estimated at around -2,000 tCO<sub>2</sub>e (the negative sign indicates that the carbon is being removed from the atmosphere) over the lifetime of the Proposed Development because the Carbon Calculator is very cautious about predicting gains from restoration and only estimates the change in balance of CO<sub>2</sub> and methane emissions from raising the water table over the 15 years post-restoration. No gains are assumed from carbon accumulation due to carbon fixation by bog plants in either the restored habitat or the borrow pits.

|                                                                                      | 2020 Layout                                  |         |         |              | 2021 Layout                          |         |         |                    |
|--------------------------------------------------------------------------------------|----------------------------------------------|---------|---------|--------------|--------------------------------------|---------|---------|--------------------|
| Source of gains                                                                      | Estimated gains (tCO <sub>2</sub> e)         |         |         | % of overall | Estimated gains (tCO <sub>2</sub> e) |         |         | % of overall gains |
|                                                                                      | Expected                                     | Minimum | Maximum | scenario)    | Expected                             | Minimum | Maximum | scenario)          |
| Change in emissions due to<br>improvement of degraded<br>bogs (off-site restoration) | (not previously calculated for the 2020 SEI) |         |         |              | -1,912                               | -       | -4,046  | 38%                |
| Change in emissions due to<br>restoration of peat from<br>borrow pits                | -6,042                                       | -4,841  | -6,111  | 100%         | -3,149                               | -2,630  | -3,026  | 62%                |
| Subtotal of gains                                                                    | -6,042                                       | -4,841  | -6,111  | 100%         | -5,061                               | -2,630  | -7,072  | 100%               |

#### Comparison with the Baseline

16.5.7 The soil carbon losses from the Proposed Development site are estimated at around 56,000 tonnes of CO<sub>2</sub>e (this is the total of losses from drained peat and leached DOCs/POCs in Table 16.3 and excavated peat in Table 16.2). This represents around 1.0 % of the total stored carbon on-site (the estimated stored carbon is set out in Table 16.3 of Chapter 16 of the 2019 EIA Report) and includes anticipated losses from excavated and drained peat and losses due to leaching. This has reduced compared to the 2020 Layout (89,000 tCO<sub>2</sub>e and 1.6% of total stored carbon).

#### Carbon Balance Assessment – Savings

16.5.8 Table 16.5 shows the estimated annual and lifetime CO<sub>2</sub> savings, based on the three different counterfactual emission factors, with a comparison between the 2020 Layout and 2021 Layout. The reduction in number of turbines has reduced the overall output of the Proposed Development so the savings are reduced compared to the 2020 Layout.

Table 16.4 - Estimated Annual and Lifetime Carbon Savings from the Operation of the Proposed Development from the Displacement of Grid Electricity

|                                             |          | 2020 Layout         |          | 2021 Layout                        |         |         |  |
|---------------------------------------------|----------|---------------------|----------|------------------------------------|---------|---------|--|
| Counterfactual emission factor              | Estimat  | ed savings (tCO2e p | er year) | Estimated savings (tCO2e per year) |         |         |  |
|                                             | Expected | Minimum             | Maximum  | Expected                           | Minimum | Maximum |  |
| Coal-fired electricity generation           | 652,287  | 620,313             | 685,541  | 517,884                            | 492,498 | 544,286 |  |
| Grid-mix of electricity generation          | 179,790  | 170,977             | 188,956  | 142,745                            | 135,747 | 150,022 |  |
| Fossil fuel - mix of electricity generation | 319,054  | 303,414             | 335,319  | 253,313                            | 240,896 | 266,227 |  |

#### Payback Time and Carbon Intensity

16.5.9 Table 16.6 shows the estimated payback time, if the electricity generated by the Proposed Development is assumed to displace electricity generated by the grid at the current average grid factor and also the carbon intensity of the units produced, with a comparison between the 2020 Layout and 2021 Layout.

|                                             |          | 2020 Layout         |         | 2021 Layout                       |         |         |  |
|---------------------------------------------|----------|---------------------|---------|-----------------------------------|---------|---------|--|
| Counterfactual emission factor              | Estima   | ted time to payback | (years) | Estimated time to payback (years) |         |         |  |
|                                             | Expected | Minimum             | Maximum | Expected                          | Minimum | Maximum |  |
| Coal-fired electricity generation           | 0.5      | 0.4                 | 0.6     | 0.5                               | 0.4     | 0.6     |  |
| Grid-mix of electricity generation          | 1.9      | 1.4                 | 2.3     | 1.7                               | 1.4     | 2.1     |  |
| Fossil fuel - mix of electricity generation | 1.0      | 0.8                 | 1.3     | 1.0                               | 0.8     | 1.2     |  |
| Carbon intensity (kgCO <sub>2</sub> e/kWh)  | 0.016    | 0.012               | 0.019   | 0.014                             | 0.011   | 0.018   |  |

16.5.10 Table 16.6 shows that the 2021 Layout is estimated to have a payback of 1.7 years based on the current grid mix and the carbon intensity of units produced would be significantly lower than the current grid mix (the value of 0.254 kgCO<sub>2</sub>e/kWh is currently used in the Carbon Calculator). This is a slight improvement on the 2020 Layout but the range of estimated payback has stayed fairly constant. This is because, although the losses are lower for 2021 Layout, and there is less stored carbon on-site being excavated, or lost through drainage and leaching, there are also fewer units of electricity being generated and therefore the savings are also reduced.

# 16.6 Assessment of Cumulative Effects

- 16.6.1 The most significant cumulative effect of the Proposed Development is on the long-term grid electricity carbon factor. As the supply of renewable electricity increases, the overall average national grid carbon factor is predicted to decrease. The cumulative effect of these projects would be to reduce the projected emissions savings of an individual project as each unit of grid electricity would be worth less carbon. This effect will be higher as renewable energy develops further into the future; however, at the same time the exact generation composition of the grid and therefore the carbon emissions per unit of electricity is less predictable.
- 16.6.2 Although there is a great deal of uncertainty surrounding the future grid factor, the Intergovernmental Analysts Group at the Department for Energy and Climate Change have produced projections which are based on the UK achieving renewable energy targets and successfully implementing the UK Energy Policy. The projections predict an average grid factor over the expected lifetime of the Proposed Development (2024 to 2053) of approximately 0.058 kgCO<sub>2</sub>e/kWh (BEIS, 2021). The impact of applying this average grid factor to the Proposed Development would be to reduce the overall average annual saving and therefore increase the expected payback period from 1.7 years to 7.5 years. However, this would not affect the carbon intensity of the project, which is estimated at 0.014 kgCO<sub>2</sub>e/kWh, which would be well below the projected average for the lifetime of the Proposed Development and would therefore contribute towards this grid decarbonisation.

# 16.7 Comparison of Effects

- 16.7.1 The results of the Carbon Calculator for the 2021 Layout show that the Proposed Development is estimated to produce annual carbon savings in the region of 143,000 tonnes of CO<sub>2</sub>e per year, and lifetime savings of nearly 4.3 Mt of CO<sub>2</sub>e through the displacement of grid electricity. This is in comparison to the annual carbon savings in the region of 180,000 tonnes of CO<sub>2</sub>e per year predicted for the 2020 Layout, and lifetime savings of nearly 5.4 Mt of CO<sub>2</sub>e. Both layouts used were based on a counterfactual emission factor of 0.254 kgCO<sub>2</sub>e/kWh, which represents displacing grid electricity at the current average annual grid mix. The lower savings of the 2021 Layout are a function of the reduced number of turbines and therefore generating capacity.
- 16.7.2 The assessment of the carbon losses and gains from the 2021 Layout has estimated an overall loss of around 244,000 tonnes of CO<sub>2</sub>e, mainly due to embodied losses from the manufacture of the turbines and provision of backup power to the grid, in comparison to the 334,000 tonnes of CO<sub>2</sub>e predicted for the 2020 Layout. Ecological carbon losses account for 24 % of the total emissions resulting from the 2021 Layout construction and operation, compared to 28 % predicted for the 2020 Layout, indicating that the 2021 Layout has a lower impact on stored carbon on the site.
- 16.7.3 The estimated payback time of the 2021 Layout, using the Scottish Government Carbon Calculator, is estimated at 1.7 years, with a minimum/maximum range of 1.4 to 2.1 years, compared against the estimated 1.9 years payback time for the 2020 Layout. There are no current guidelines about what payback time constitutes a significant impact, but 1.7 years is around 6 % of the anticipated lifespan of the Proposed Development. Compared to fossil fuel electricity generation projects, which also produce embodied emissions during the construction phase and significant emissions during operation due to combustion of fossil fuels, the Proposed Development has a low carbon footprint and after 1.7 years, the electricity generated is estimated to be carbon neutral and will displace grid electricity generated from fossil fuel sources. The carbon intensity of the electricity produced by the Proposed Development is estimated at 0.014 kgCO<sub>2</sub>e/kWh. This is below the outcome indicator for the electricity grid intensity of 0.05 kgCO2e/kWh of the carbon intensity required by the Scottish Government in the Climate Change Plan (2018-2032) and therefore the Proposed Development is evaluated to have an overall beneficial effect on climate change mitigation.

# 16.8 References

Department for Business, Energy & Industrial Strategy. (2021). Green Book supplementary guidance: valuation of energy use and greenhouse gas emissions for appraisal. Data tables 1-19: supporting the toolkit and the guidance. *Available at* 

<u>https://www.gov.uk/government/publications/valuation-of-energy-use-and-greenhouse-gas-</u> <u>emissions-for-appraisal</u> Accessed on: 07/09/21

Scottish Government (2018). Climate Change Plan. The Third Report on Proposals and Policies 2018-2032.